Skip to main content

Pharmacology of hypothalamic neurones

  • Chapter
Pharmacology of the Hypothalamus

Abstract

In this chapter our aim is not so much to review the current literature on the neurophysiology and neuropharmacology of the hypothalamus, but rather to draw attention to the way in which the action of oxytocin on the contractile tissues of the lactating breast has allowed the neurophysiologist to explore the manner in which electrical activity in the magnocellular neurohypophyseal system is transformed into hormone release. Although there may be a similar causal relationship between electrical activity in the parvicellular or tuberoinfundibular system and the release of gonadotrophins (Dufy et al., 1974; Wuttke, 1974), an effect of these neurones on the release of other trophic or inhibitory substances involved in the regulation of adenohypophyseal secretion has yet to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, V. C., Koelle, G. B., and Smart, P. (1957). Histochemical demonstration of cholinesterases in the hypothalamus of the dog. J. Physiol. (tond.), 139, 137–144

    Article  Google Scholar 

  • Arnauld, E., Dufy, B. and Vincent, J. D. (1975). Hypothalamic supraoptic neurones: rates and patterns of action potential firing during water deprivation in the unanaesthetised monkey. Brain Res., 100, 315–325

    Article  PubMed  CAS  Google Scholar 

  • Arnauld, E., Vincent, J. D. and Dreifuss, J. J. (1974). Firing patterns of hypothalamic neurones during water deprivation in monkeys. Science, 185, 535–537

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. L., Crayton, J. W. and Nicoll, R. A. (1971a). Supraoptic neurosecretory cells: adrenergic and cholinergic sensitivity. Science, 171, 208–210

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. L., Crayton, J. N. and Nicoll, R. A. (197lb). Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J. Physiol. (Lond.), 218, 19–32

    Google Scholar 

  • Barker, J. L., Crayton, J. W. and Nicoll, R. A. (1971c). Antidromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells. Brain Res., 33, 353–366

    Article  PubMed  CAS  Google Scholar 

  • Barry, J. and Dubois, M. P. (1975). Immunofluorescence study of LRF- producing neurons in the cat and the dog. Neuroendocrinology, 18, 290–298.

    Article  PubMed  CAS  Google Scholar 

  • Barry, J., Dubois, M. P. and Carette, B. (1974). Immunofluorescence study of the preoptic-infundibular LRF neurosecretory pathway in the normal, castrated or testosterone-treated male guinea pig. Endocrinology, 95, 1416–1423

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. P. Jr., Arregui, A. and Snyder, S. H. (1976). Angiotensin II as a possible mammalian central neurotransmitter: synaptic neurochemistry in normal mammalian and Huntington chorea brain tissue. Neurosci. Abstr., 2, 775.

    Google Scholar 

  • Bennett, C. T. and Pert, A. (1974). Antidiuresis produced by injections of histamine into the cat supraoptic nucleus. Brain Res., 78, 151–156

    Article  PubMed  CAS  Google Scholar 

  • Bisset, G. W. (1968). The milk-ejection reflex and the action of oxytocin, vasopressin and synthetic analogues on the mammary gland. Neurohypophyseal hormones and similar polypeptides. In B. Berde (ed.), Handbook of Experimental Pharmacology, Chapt. 23, Springer-verlag, Berlin, 475–544

    Google Scholar 

  • Bisset, G. W. (1976). ‘Neurohypophyseal hormones’. In J. A. Parsons (ed.), Peptide Hormones, The Macmillan Press Ltd., London, 145–177

    Chapter  Google Scholar 

  • Blackwell, R. E. and Guillemin, R. (1973). Hypothalamic control of adenohypophyseal secretions. Ann. Rev. Physiol., 35, 357–370

    Article  CAS  Google Scholar 

  • Bloom, F. E., Oliver, A. P. and Salmoiraghi, G. C. (1963). The responsiveness of individual hypothalamic neurons to microelectrophoretically administered endogenous amines. Int. J. Neuropharmac., 2, 181–193

    Article  CAS  Google Scholar 

  • Brawer, J. (1972). The fine structure of the ependymal tanycytes at the level of the arcuate nucleus. J. Comp. NeuroL, 145, 25–42

    Article  PubMed  CAS  Google Scholar 

  • Brawer, J. and Sonnenschein, C. (1975). Cytopathological effects of oestradiol on the arcuate nucleus of the female rat. A possible mechanism for pituitary tumorigenesis. Am. J. Anat., 144, 57–88

    Article  PubMed  CAS  Google Scholar 

  • Brimble, M. J. and Dyball, R. E. J. (1977). Characterisation of the responses of oxytocin and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J. Physiol. (Lond.), 271, 253–271

    Article  CAS  Google Scholar 

  • Brownstein, M. J. (1977). Neurotransmitters and hypothalamic hormones in the central nervous system. Fed. Proc., 36, 1960–1963

    PubMed  CAS  Google Scholar 

  • Brownstein, M. J., Palkovits, M., Saavedra, J. M. and Kizer, J. S. (1976). Distribution of hypothalamic hormones and neurotransmitters within the diencephalon. In L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Raven Press, New York 1–23

    Google Scholar 

  • Brownstein, M. J., Saavedra, J. M., Axelrod, J., Zeman, G. H. and Carpenter, D. O. (1974a). Coexistence of several putative neurotransmitters in single identified neurones of aplysia. Proc. Nat. Acad. Sci., 71, 4662–4655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brownstein, M. J., Saavedra, J. M., Palkovits, M. and Axelrod, J. (1974b). Histamine content of hypothalamic nuclei of the rat. Brain Res., 77, 151–156

    Article  PubMed  CAS  Google Scholar 

  • Buggy, J., Fisher, A. E., Hoffman, W. E., Johnson, A. K. and Phillips, M. I. (1975). Ventricular obstruction: effect of drinking induced by intracranial angiotensin. Science, 190, 72–74

    Article  PubMed  CAS  Google Scholar 

  • Burnstock, G. (1976). Do some nerve cells release more than one transmitter? Neuroscience, 1, 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Burt, D. R., and Snyder, S. H. (1975). Thyrotrophin releasing hormone (TRH)-apparent receptor binding in rat brain membranes. Brain Res., 93, 309–328

    Article  PubMed  CAS  Google Scholar 

  • Cajal, S. R. (1911). Histologie du Système Nerveux de l’Homme et des Vertèbres, Vol. 2, Naloine, Paris

    Google Scholar 

  • Christ, J. F. (1966). Nerve supply, blood supply and cytology of the neurohypophysis. In G. W. Harris and B. T. Donovan (eds.), The Pituitary Gland, University of California Press, Berkeley, Calif., 62–130

    Google Scholar 

  • Crawford, J. M. and Curtis, D. R. (1966). Pharmacological studies on feline Betz cells. J. Physiol. (Lond.), 186, 121–138

    Article  CAS  Google Scholar 

  • Cross, B. A., Dyball, R. E. J., Dyer, R. G., Jones, C. W., Lincoln, D. W., Morris, J. F. and Pickering, B. T. (1975). Endocrine neurones. Recent Prog. Hormone Res., 31, 243–294

    CAS  Google Scholar 

  • Cross, B..A. and Green, J. D. (1959). Activity of single neurones in the hypothalamus: effect of osmotic and other stimuli. J. Physiol. (Lond.), 148, 554–569

    Article  CAS  Google Scholar 

  • Cross, B. A., Moss, R. L. and Urban, I. (1971). Effect of iontophoretic application of acetylcholine and noradrenaline to antidromically identified paraventricular neurones. J. Physiol. (Lond.), 214, 28–30 P

    Google Scholar 

  • Cross, B. A. and Silver, I. A. (1966). Electrophysiological studies on the hypothalamus. Brit. Med. Bull., 22, 254–260

    PubMed  CAS  Google Scholar 

  • Curtis, D. R. and Eccles, R. M. (1958). The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J. NeurophysioL, 141, 435–445

    CAS  Google Scholar 

  • Curtis, D. R. and Ryall, R. W. (1966a). The excitation of Renshaw cells by cholinomimetics. Expl. Brain Res., 2, 49–65

    CAS  Google Scholar 

  • Curtis, D. R. and Ryall, R. W. (1966b). The acetylcholine receptors of Renshaw cells. Expl. Brain Res., 2, 66–80

    CAS  Google Scholar 

  • Dale, H. A. (1935). Pharmacology and nerve endings. Proc. R. Soc. Med., 28, 319–332

    PubMed  CAS  PubMed Central  Google Scholar 

  • De Wied, D., Witter, A. and Greven, H. M. (1975). Behaviourally active ACTH analogues. Biochemical Pharmacology, 24, 1463–1468

    Article  PubMed  Google Scholar 

  • Dingledine, R. and Kelly, J. S. (1978). Cholinergic processes at synaptic junctions. In J. D. Feldman, N. B. Gilula and J. D. Pitts (eds.), Intercellular Junctions and Synapses in Development, Chapman and Hall, London, 141–179

    Google Scholar 

  • Dreifuss, J. J., Harris, M. C. and Tribollett, E. (1976a). Excitation of phasically firing hypothalamic supraoptic neurones by carotid occlusion in rats. J. Physiol. (Lond.), 257, 337–354

    Article  CAS  Google Scholar 

  • Dreifuss, J. J., Kalnins, I., Kelly, J. S. and Ruf, K. B. (1971).. Action potentials and release of neurohypophyseal hormones in vitro. J. Physiol. (Lond.) 215, 805–817

    Google Scholar 

  • Dreifuss, J. J. and Kelly, J. S. (1970). Excitation of identified supraoptic neurones by the iontophoretic application of acetylcholine. J. Physiol. (Lond.), 210, 170–172 P

    Google Scholar 

  • Dreifuss, J. J. and Kelly, J. S. (1972a). Recurrent inhibition of antidromically identified rat supraoptic neurones. J. Physiol. (Lond.), 220, 87–103

    Article  CAS  Google Scholar 

  • Dreifuss, J. J. and Kelly, J. S. (1972b). The activity of identified supraoptic neurones and their responses to acetylcholine applied by iontophoresis. J. Physiol. (Lond.), 220, 105–118

    Article  CAS  Google Scholar 

  • Dreifuss, J. J., Murphy, J. T. and Gloor, P. (1968). Contrasting effects of two identified amygdaloid efferent pathways on single hypothalamic neurones. J. Neurophysiol, 31, 237–248

    PubMed  CAS  Google Scholar 

  • Dreifuss, J. J., Nordmann, J. J. and Vincent, J.-D. (1973). Recurrent inhibition of supraoptic neurosecretory cells in Brattleboro rats. J. Physiol. (Lond.), 237, 25–27 P

    Google Scholar 

  • Dreifuss, J. J., Tribollet, E. and Baertschi, A. J. (1976b). Excitation of supraoptic neurones by vaginal distention in lactating rats: correlation with neurohypophyseal hormone release. Brain Res., 113, 600–605

    Article  PubMed  CAS  Google Scholar 

  • Dubois, M. P. and Kolodziejczyk, E. (1975). Centre hypothalamiques due rat secretant la somatostatine: reparition des pericaryons en 2 systems magno et parvocellulaires (études immunocytologiques). C. R. Acad. Sci. Paris, 281, 1737–1740

    CAS  Google Scholar 

  • Dufy, B., Dufy-Barbe, L. and Poulain, D. (1974). Gonadotropin release in relation to electrical activity in hypothalamic neurones. J. Neural Transmission, 35, 47–52

    Article  CAS  Google Scholar 

  • Dyball, R. E. J. (1971). Oxytocin and ADH secretion in relation to electrical activity on antidromically identified supraoptic and paraventricular units. J. Physiol. (Lond.), 214, 245–256

    Article  CAS  Google Scholar 

  • Dyball, R. E. J. (1974). Single unit activity in the hypothalamo-neurohypophyseal system system of Brattleboro rats. J. Endocrinol., 60, 135–143

    Article  PubMed  CAS  Google Scholar 

  • Dyball, R. E. J. and Koizumi, K. (1969). Electrical activity in the supraoptic and paraventricular nuclei associated with neurohypophyseal hormone release. J. Physiol. (Lond.), 201, 711–722.

    Article  CAS  Google Scholar 

  • Dyer, R. G. and Dyball, R. E. J. (1974). Evidence for a direct effect of LRF and TRF on single unit activity in the rostral hypothalamus. Nature, 252, 486–488

    Article  PubMed  CAS  Google Scholar 

  • Dyer, R. G., Macleod, D. N. K. and Ellendorf, F. (1976). Electrophysiological evidence for sexual dimorphism and synaptic convergence in the preoptic and anterior hypothalamic areas of the rat. Prot’. R. Soc. Lond. B., 193, 421–440

    Article  CAS  Google Scholar 

  • Eccles, J. C., Eccles, R. M. and Fatt, P. (1956). Pharmacological investigations on a central synapse operated by acetylcholine. J. Physiol. (Lond.), 131, 154–159

    Article  CAS  Google Scholar 

  • Eccles, J. C., Fatt, P. and Koketsu, K. (1954). Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol (Lond.), 126, 524–562

    Article  CAS  Google Scholar 

  • Epelbaum, J., Brazeau, P., Tsang, D. Brawer, J. and Martin, J. B. (1977). Subcellular distribution of radioimmunoassayable somatostatin in rat brain. Brain Res., 126, 309–324

    Article  PubMed  CAS  Google Scholar 

  • Epstein, A. N., Fitzsimons, J. T. and Rolls, B. J. (1970). Drinking induced by injection of angiotensin into the brain of the rat. J. Physiol: (Lond.). 210, 457–474

    Article  CAS  Google Scholar 

  • Feldberg, W. and Vogt, M. (1948). Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. (Lond.), 107, 372–381

    Article  CAS  Google Scholar 

  • Felix, D. (1976). Peptide and acetylcholine action of neurones of the cat subfornical organ. Naunyn-Schmiedeberg:sArch. Pharmacol., 292, 15–20

    Article  CAS  Google Scholar 

  • Felix, D. and Akert, K. (1974). The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res., 76, 350–353

    Article  PubMed  CAS  Google Scholar 

  • Felix, D. and Phillips, M. I. (1978). Effects of angiotensin II on central neurones. In R. W. Ryall and J. S. Kelly (eds.). Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, Elsevier/North Holland, Amsterdam, 104–106

    Google Scholar 

  • Freund-Mercier, M. J. and Richard, P. H. (1977). Spontaneous and reflex activity of paraventricular nucleus units in cycling and lactating rats. Brain Res., 130, 505–520

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K., Ganten, D., Hôkfelt, T. and Bome, P. (1976). Immunohistochemical evidence for the existence of angiotensin II containing nerve terminals in the brain and spinal cord of the rat. Neurosci. Lett., 2, 229–234

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K. and Hökfelt, T. (1967). The influence of central catecholamine neurones in the hormone secretion from the anterior and posterior pituitary. In F. Stutinsky (ed.). Neurosecretion, Springer, Berlin

    Google Scholar 

  • Ganten, D., Hutchinson, J. S., Schelling, J. P., Ganten, U. and Fischer, H. (1976). The iso-renin angiotensin systems in extra-renal tissue. Clin. Exp. Pharm. Physiol., 2, 103–126

    Article  Google Scholar 

  • Garbarg, M., Barbin, G., Feger, J. and Schwartz, J.-C. (1974). Histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle. Science, 186, 833–835

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg, M. (1968). Production, release, transportation and elimination of the neurohypophyseal hormones. In B. Berde (ed.), Handbook of Experimental Pharmacology, Springer-Verlag, Berlin, 286–371

    Google Scholar 

  • Ginsburg, M. and Brown, L. M. (1956). Effect of anaesthetics and haemorrhage on the release of neurohypophyseal antidiuretic hormone. Brit. J. Pharmacol. Chemother., 11, 236–244

    Article  CAS  Google Scholar 

  • Gordon, G. and Jukes, M. G. M. (1964). Descending influences on the exteroceptive organizations of the cat’s gracile nucleus. J. Physiol. (Lond.), 173, 291–319

    Article  CAS  Google Scholar 

  • Green, M. D., Simon, M. L. and Lomax, P. (1975). Histamine as a neurotransmitter in the central thermoregulatory pathways of the rat. Proc. West. Pharmacol. Soc., 18, 110–113

    PubMed  CAS  Google Scholar 

  • Gronan, R. J. and York, D. H. (1976). Effect of angiotensin on cells in the preoptic area of rats. Neurosci Abst., 2, 426

    Google Scholar 

  • Haas, H. L. (1974). Histamine: action on single hypothalamic neurones. Brain Res, 76, 363–366

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L., and Wolf, P. (1977). Central actions of histamine: microelectrophoretic studies. Brain Res., 122, 269–279

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L., Wolf, P. and Nussbaumer, J. C. (1975). Histamine: action on supraoptic and other hypothalamic neurones of the cat. Brain Res., 88, 166–170

    Article  PubMed  CAS  Google Scholar 

  • Halász, B. (1969). The endocrine effects of isolation of the hypothalamus from the rest of the brain. In W. F. Ganong and L. Martini (eds.), Frontiers in Neuroendocrinology, Oxford University Press, New York, 307–342

    Google Scholar 

  • Harris, G. W. (1955). Neural Control of Pituitary Gland. Edward Arnold, London

    Google Scholar 

  • Harris, G. W., Manabe, Y. and Ruf, K. B. (1969). A study of the parameters of electrical stimulation of unmyelinated fibers in the pituitary stalk. J. Physiol. (Lond.), 203, 67–81

    Article  CAS  Google Scholar 

  • Harris, M. C. and Sanghera, M. (1974). Projection of medial basal hypothalamic neurones to the preoptic anterior hypothalamic areas and the paraventricular nucleus in the rat. Brain Res., 81, 401–411

    Article  PubMed  CAS  Google Scholar 

  • Haymaker, W., Anderson, E. and Nauta, W. J. H. (1969). The Hypothalamus, Thomas, Springfield

    Google Scholar 

  • Hayward, J. N. (1975). Neural control of the posterior pituitary. Ann. Rev. Physiol., 37, 191–210

    Article  CAS  Google Scholar 

  • Hayward, J. (1977). Functional and morphological aspects of hypothalamic neurones. Physiol. Rev., 57, 574–658

    PubMed  CAS  Google Scholar 

  • Hayward, J. N. and Jennings, D. P. (1973). Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetised monkeys. Part II: Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone. J. Physiol. (Lond.), 232, 545–572

    Article  CAS  Google Scholar 

  • Ishida, A. (1970). The oxytocin and the compound action potential evoked by electrical stimulation of the isolated neurohypophysis of the rat. Jap. J. Physiol., 20, 84–96

    Article  CAS  Google Scholar 

  • Kandel, E. R. (1964). Electrical properties of hypothalamic neuroendocrine cells. J. gen. Physiol., 47, 691–717

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kawakami, M. and Sakuma, Y. (1974). Responses of hypothalamic neurons to the micro-iontophoresis of LH-RH, LH and FSH under various levels of circulating ovarian hormones. Neuroendocrinology, 15, 290–307

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, M. and Sakuma, Y. (1976). Electrophysiological evidence for possible participation of periventricular neurons in anterior pituitary regulation. Brain Res., 101, 79–94

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. S. (1975). Microiontophoretic application of drugs onto single neurons. In L. L. Iversen, S. D. Iversen and S. H. Snyder (eds.), Handbook of Psychopharmacology Vol 2, Plenum Press, New York and London, 29–67

    Google Scholar 

  • Kelly, J. S. and Dreifuss, J. J. (1970). Antidromic inhibition of identified rat supraoptic neurones. Brain Res., 22, 406–409

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. S., Simmonds, M. A. and Straughan, D. W. (1975). Microelectrode techniques. In P. B. Bradley (ed.), Methods in Brain Research, Wiley, New York, 333–337

    Google Scholar 

  • Koizumi, K., Ishikawa, T. and McC. Brooks, C. (1973). The existence of facilitatory axon collaterals in neurosecretory cells of the hypothalamus. Brain. Res., 63, 408–413

    Article  PubMed  CAS  Google Scholar 

  • Koizumi, K. and Yamashita, H. (1972). Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings. J. Physiol. (Lond.), 221, 683–705

    Article  CAS  Google Scholar 

  • Krnjevic, K. and Phillis, J. W. (1963a). Acetylcholine-sensitive cells in the cerebral cortex J. Physiol. (Lond.), 166, 296–327

    Article  CAS  Google Scholar 

  • Krnjevic, K. and Phillis, J. W. (1963b). Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex. J. Physiol. (Lond.), 166, 328–350

    Article  CAS  Google Scholar 

  • Krnjevic, K., Pumain, R. and Renaud, L. (1971). The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. (Lond.), 215, 247–268

    Article  CAS  Google Scholar 

  • Leontovich, T. A. (1970). The neurons of the magnocellular neurosecretory nuclei of the dog’s hypothalamus. J. Hirnforsch., 11, 499–517

    CAS  Google Scholar 

  • Léránth, Cs., Zaborszky, L., Marton, J. and Palkovits, M. (1975). Quantitative studies on the supraoptic nucleus in the rat. I. Synaptic organization. Exp. Brain Res., 22, 509–523

    Article  PubMed  Google Scholar 

  • Lichtensteiger, W. and Keller, P. J. (1974). Tubero-infundibular dopamine neurons and the secretion of luteinizing hormone and prolactin: extrahypothalamic influences, interaction with cholinergic systems and the effect of urethane anesthesia, Brain Res. 74 279–303

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, D. W. and Wakerley, J. B. (1974). Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin. J. Physiol. (Lond.), 242, 533–554

    Article  CAS  PubMed Central  Google Scholar 

  • Lincoln, D. W. and Wakerley, J. B. (1975). Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat. J. Physiol. (Lond.) 250 443–461

    Article  CAS  Google Scholar 

  • Makara, G. B., Harris, M. C. and Spyer, K. M. (1972). Identification and distribution of tubero-infundibular neurones. Brain Res., 40, 283–290

    Article  PubMed  CAS  Google Scholar 

  • Moss, R. L. (1976). Unit responses in preoptic and arcuate neurons related to anterior pituitary function. In: L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Vol 4, Raven Press, New York, 95–128

    Google Scholar 

  • Moss, R. L. (1977). Role of hypophysiotropic neurohormone in mediating neural and behavioural events. Fed. Proc., 36, 1978–1983

    PubMed  CAS  Google Scholar 

  • Moss, R. L., Dyball, R. E. J. and Cross, B. A. (1972a). Excitation of antidromically identified neurosecretory cells in the paraventricular nucleus by oxytocin applied iontophoretically. Exp. Neurol., 34, 95–102

    Article  PubMed  CAS  Google Scholar 

  • Moss, R. L., Kelly, M. and Riskind, P. (1975). Tubero-infundibular neurons: dopaminergic and norepinephrinergic sensitivity. Brain Res., 89, 265–277

    Article  PubMed  CAS  Google Scholar 

  • Moss, R. L., Urban, I. and Cross, B. A. (1972b). Microelectrophoresis of cholinergic and aminergic drugs on paraventricular neurons. Am. J. Physiol., 223, 310–318

    PubMed  CAS  Google Scholar 

  • Mroz, E. A., Brownstein, M. J. and Leeman, S. E. (1976). Evidence for substance P in the habenulo-interpeduncular tract. Brain Res., 113, 597–599

    Article  PubMed  CAS  Google Scholar 

  • Murphy, J. T. and Renaud, L. P. (1969). Mechanisms of inhibition in the ventromedial nucleus of the hypothalamus. J. Neurophysiol., 32, 85–102

    PubMed  CAS  Google Scholar 

  • Negoro, H. and Holland, R. C. (1972). Inhibition of unit activity in the hypothalamic paraventricular nucleus following antidromic activation. Brain Res., 42, 385–402

    Article  PubMed  CAS  Google Scholar 

  • Negoro, H., Visessuwan, S. and Holland, R. C. (1973). Inhibition and excitation of units in paraventricular nucleus after stimulation of the septum, amygdala and neurohypophysis. Brain Res., 57, 479–483

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R. A. and Barker, J. L. (1971a). Excitation of supraoptic neurosecretory cells by angiotensin II. Nature New Biol., 233, 172–174

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R. A. and Barker, J. L. (197lb). The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. Brain Res., 35, 501–511

    Google Scholar 

  • Novin, D., Sundsten, J. W., and Cross, B. A. (1970). Some properties of antidromically activated units in the paraventricular nucleus of the hypothalamus. Expl. Neurol. 26, 330–341

    Article  CAS  Google Scholar 

  • Olivecrona, H. (1957). Paraventricular nucleus and pituitary gland. Acta Physiol. Scand., 40, Suppl. 136, 1–178

    Google Scholar 

  • Oomura, Y., Ono, T. and Ooyama, H. (1970). Inhibitory action of the amygdala on the central hypothalamic area in rats. Nature, 228, 1108–1110

    Article  PubMed  CAS  Google Scholar 

  • Oomura, Y., Ono, T., Sugimori, M. and Wayner, M. J. (1976). Acetylcholine, an inhibitory transmitter on the rat lateral hypothalamus. Brain Res Bull., 1, 151–153

    Article  PubMed  CAS  Google Scholar 

  • Parry, H. B. and Livett, B. G. (1976). Neurophysin in the brain and pituitary gland of normal and scrapie-affected sheep. Part I: Its localization in the hypothalamus and neurohypophysis with particular reference to a new hypothalamic neurosecretory pathway to the median eminence. Neuroscience, 1, 275–299

    Article  PubMed  CAS  Google Scholar 

  • Phillips, M. I. and Felix, D. (1976). Specific angiotensin II receptive neurons in the cat subfornical organ. Brain Res., 109, 531–540

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., Kostopoulos, G. K. and Odutola, A. (1975). On the specificity of histamine H2 -receptor antagonists in the rat cerebral cortex. Canad. PhysioL Pharma col., 53, 1205–1209

    Article  CAS  Google Scholar 

  • Phillis, J. W. and Limacher, J. J. (1974). Excitation of cerebral cortical neurons by various polypeptides. Exp. Neurol, 43, 414–423

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., Tebecis, A. K. and York, D. H. (1968). Histamine and some antihistamines: their actions on cerebral cortical neurones. Brit. J. Pharmacol., 33, 426–440

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pickford, M. (1939). The inhibitory effect of acetylcholine on diuresis in the dog and its pituitary transmission. J. PhysioL (Lond.), 95, 226–238

    Article  CAS  Google Scholar 

  • Pittman, Q. J., Blume, H. W., MacKenzie, B. W. and Renaud, L. P. (1977). GABA and glycine and synaptic inhibition in the hypothalamic ventromedial nucleus of the rat. Canad. PhysioL, 8, 56

    Google Scholar 

  • Plotnikoff, N. P. and Kastin, A. J. (1976). Neuropharmacology of hypothalamic releasing factors. Biochemical Pharmacology, 25, 363–365

    Article  PubMed  CAS  Google Scholar 

  • Porter, J. C., Kameri, I. A. and Grazia, Y. R. (1971). Pituitary blood flow and portal vessels. In L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Oxford University Press, Oxford, 145–175

    Google Scholar 

  • Poulain, D. A., Wakerley, J. B. and Dyball, R. E. J. (1977). Electrophysiological differentiation of oxytocin- and vasopressin-secreting neurones. Proc. Roy. Soc. Lond. B., 196, 367–384

    Article  CAS  Google Scholar 

  • Prange, A. J. Jr., Nemeroff, C. B., Lipton, M. A., Breese, G. R. and Wilson, I. C. (1978). Peptides and the central nervous system. In L. L. Iversen, S. D. Iversen and S. H. Snyder (eds.), Handbook of Psychopharmacology, Vol. 13, Plenum Press, New York, to be published

    Google Scholar 

  • Ramirez, V. D., Gautron, J. P., Epelbaum, J., Pattou, E., Zamura, A. and Kordon, C. (1975). Distribution of LH-RH in subcellular fractions of the basomedial hypothalamus. Mol. Cell. EndocrinoL, 3, 339–350

    Article  PubMed  CAS  Google Scholar 

  • Renaud, L. P. (1975). Electrophysiological evidence to suggest that hypothalamic releasing (inhibiting) peptides may be liberated from nerve terminals in the CNS. Neurosci. Abstr., 1, 441

    Google Scholar 

  • Renaud, L. P. (1976a). Tuberoinfundibular neurons in the basomedial hypothalamus of the rat: electrophysiological evidence for axon collaterals to hypothalamic and extrahypothalamic areas. Brain Res., 105, 59–72

    Article  PubMed  CAS  Google Scholar 

  • Renaud, L. P. (1976b). Tuberoinfundibular neurons: electrophysiological studies on afferent and efferent connections. The Physiologist, 19, 388

    Google Scholar 

  • Renaud, L. P. (1976c). Influence of amygdala stimulation on the activity of identified tuberoinfundibular neurons in the rat hypothalamus. J. PhysioL (Lond.)., 260 237–252

    Article  CAS  PubMed Central  Google Scholar 

  • Renaud, L. P. (1976d). An electrophysiological study of amygdalo-hypothalamic projections to the ventromedial nucleus of the rat. Brain Res., 105, 45–58

    Article  PubMed  CAS  Google Scholar 

  • Renaud, L. P. (1976e). Response of identified ventromedial hypothalamic nucleus neurons to putative neurotransmitters applied by microiontophoresis. Brit. J. PharmacoL, 55, 277–278 P

    Google Scholar 

  • Renaud, L. P. (1977a). Influence of medial preoptic-anterior hypothalamic area stimulation on the excitability of mediobasal hypothalamic neurones in the rat. J. Physiol. (Lond.), 264, 541–564

    Article  CAS  Google Scholar 

  • Renaud, L. P. (1977b). TRH, LH-RH and somatostatin: distribution and physiological action in neural tissue. In W. M. Cowan and J. A. Ferendelli (eds.),Neuroscience Symposia, Vol. 2, Raven Press, New York, 265–290

    Google Scholar 

  • Renaud, L. P. (1978a). Influence of peptides and putative neurotransmitters on the excitability of identified hypothalamic neurons. In R. W. Ryall and J. S. Kelly (eds.), Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System. Elsevier, Amsterdam, 127–129

    Google Scholar 

  • Renaud, L. P. (1978b). Neurophysiological organization of the Endocrine Hypothalamus. Association for Research in Nervous and Mental Disease Research Publication, Vol. 56, in S. Reichlin, R. J. Baldessarini and J. B. Martin (eds.), The Hypothalamus Raven Press, New York, 269–301 (in press)

    Google Scholar 

  • Renaud, L. P. and Martin, J. B. (1975). Electrophysiological studies of connections of hypothalamic ventromedial nucleus neurons in rat-evidence for a role in neuroendocrine regulation. Brain Res., 93, 145–151

    Article  PubMed  CAS  Google Scholar 

  • Renaud, L. P., Martin, J. B. and Brazeau, P. (1975). Depressant action of TRH, LH-RH and somatostatin on activity of central neurons. Nature, 255, 233–235

    Article  PubMed  CAS  Google Scholar 

  • Renaud, L. P., Martin, J. B. and Brazeau, P. (1976). Hypothalamic releasing factors: physiological evidence for a regulatory action on central neurons and pathways for their distribution in brain. Pharmacol. Biochem. Behay., 5, Suppl. 1, 171–178

    Google Scholar 

  • Roberts, J. S. (1971). Progesterone-inhibition of oxytocin release during vaginal distention: evidence for a central site of action. Endocrinology, 89, 1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. S. (1973). Functional integrity of the oxytocin-release reflex in goats: dependence on oestrogen. Endocrinology, 93, 1309–1314

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. S. (1975). Cyclical fluctuations in reflexive oxytocin release during the oestrous cycle of the goat. Biol. Reproduct., 13, 314–317

    Article  CAS  Google Scholar 

  • Roberts, J. S. and Share, L. (1969). Effects of progesterone and oestrogen on blood levels of oxytocin during vaginal distention. Endocrinology, 84, 1076–1081

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. S. and Share, L. (1970). Inhibition by progesterone of oxytocin secretion during vaginal stimulation. Endocrinology, 87, 812–815

    Article  PubMed  CAS  Google Scholar 

  • Sakai, K. K., Marks, B. H., George, J. M. and Koestner, A. (1974). Specific angiotensin II receptors in organ-cultured canine supraoptic nucleus cells. Life Sa., 14, 1337–1344

    Article  CAS  Google Scholar 

  • Sawaki, Y. and Yagi, K. (1973). Electrophysiological identification of cell bodies of the tuberoinfundibular neurons in the rat. J. Physiol. (Lond.), 230, 75–85

    Article  CAS  Google Scholar 

  • Sawaki, Y. and Yagi, K. (1976). Inhibition and facilitation of antidromically identified tuberoinfundibular neurons following stimulation of the median eminence in the rat. J. Physiol. (Load.), 260, 447–460

    Article  CAS  Google Scholar 

  • Schally, A. V., Arimura, A. and Kastin, A. J. (1973). Hypothalamic regulatory hormones. Science, 179, 341–350

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, J.-C. (1975). Histamine as a transmitter in brain. Life Sci., 17, 503–528

    Article  PubMed  CAS  Google Scholar 

  • Severs, W. B. and Daniels-Severs, A. E. (1973). Effects of angiotensin on the central nervous system. Pharmacol. Rev., 25, 415–449

    PubMed  CAS  Google Scholar 

  • Shute, C. C. D. (1970). Distribution of cholinesterase and cholinergic pathways. In L. Martini, M. Motta and F. Fraschini (eds.), The Hypothalamus, Academic Press, New York, 167–179

    Google Scholar 

  • Silverman, A. J. (1976). Ultrastructural studies on the localization of neurohypophyseal hormones and their carrier proteins. J. Histochem. Cytochem., 24, 816–827

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J. B. and Routtenberg, A. (1973). Subfornical organ: site of drinking elicitation by angiotensin II. Science, 181, 1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Sirett, N. E., McLean, A. S., Bray, J. J. and Hubbard, J. I. (1977). Distribution of angiotensin II receptors in rat brain. Brain Res., 122, 299–312

    Article  PubMed  CAS  Google Scholar 

  • Spehlmann, R. (1963). Acetylcholine and prostigmine electrophoresis at visual cortex neurones. J. Physiol. (Loud.), 26, 127–139

    CAS  Google Scholar 

  • Swanson, L. W. (1977). Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res., 128, 346–353

    Article  PubMed  CAS  Google Scholar 

  • Szentágothai, J., Flerko, B., Mess, B. and Halász, B. (1968). Hypothalamic control of the anterior pituitary, Akademiai Kiado, Budapest

    Google Scholar 

  • Wakerley, J. B. and Lincoln, D. W. (1973). The milk ejection reflex of the rat: a 20-to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release. J. Endocrinol., 57, 477–493

    Article  PubMed  CAS  Google Scholar 

  • Wakerley, J. B., Poulain, D. A., Dyball, R. E. J. and Cross, B. A. (1975). Activity of phasic neurosecretory cells during haemorrhage. Nature, 258 82–84

    Article  PubMed  CAS  Google Scholar 

  • Wayner, M. J., Ono, T. and Nolley, D. (1973). Effects of angiotensin II in central neurones. Pharmac. Biochem. Behay., 1, 679–691

    Article  CAS  Google Scholar 

  • Wilber, J. F., Montoya, E., Plotnikoff, N., White, W. F., Gendrich, N. P., Renaud, L. and Martin, J. B. (1976). Gonadotrophin-releasing hormone and thyrotrophin-releasing hormone: distribution and effects in the central nervous system. Recent Prog. Hormone Res., 32, 117–153

    CAS  Google Scholar 

  • Wimersma Greidanus, Tj. B., Bohus, B. and de Wied, D. (1975). The role of vasopressin in memory processes. In W. H. Gispen, Tj. B. Van Wimersma Greidanus, B. Bohus and D. de Wied (eds.), Progress in Brain Research, Vol. 42, Elsevier, Amsterdam, 135–141

    Google Scholar 

  • Wolf, P. and Monnier, M. (1973). Electroencephalographic, behavioural and visceral effects of intraventricular infusion of histamine in the rabbit. Agents and Actions, 3, 196

    Article  PubMed  CAS  Google Scholar 

  • Wurtmann, R. J. (1970). Neuroendocrine transducer cells in mammals. In F. O. Schmitt (ed.), The Neurosciences Second Study Program, Rockefeller University Press, New York, 530–538

    Google Scholar 

  • Wurtman, R. J. (1971). Brain monoamines and endocrine function. Neuroscience Res. Prog. Bull., 9, 171–297

    Google Scholar 

  • Wuttke, W. (1974). Preoptic unit activity and gonadotropin release. Exp. Brain Res., 19, 205–216

    Article  PubMed  CAS  Google Scholar 

  • Yagi, K., Azuma, T. and Matsuda, K. (1966). Neurosecretory cell: capable of conducting impulse in rats. Science, 154, 778–779

    Article  PubMed  CAS  Google Scholar 

  • Yagi, K. and Sawaki, Y. (1974). Recurrent inhibition and facilitation demonstration in the tuberoinfundibular system and effects of strychnine and picrotoxin. Brain Res., 84, 155–159

    Article  Google Scholar 

  • Yamashita, H., Koizumi, K. and Brooks, C. McC. (1970). Electrophysiological studies of neurosecretory cells in the cat hypothalamus. Brain Res., 20, 462–466

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough, G. G., Haubrich, D. R. and Schmidt, D. E. (1978). Thyrotrophin releasing hormone (TRH) and MK-771 interaction with CNS cholinergic mechanisms. In R. W. Ryall and J. S. Kelly (eds.), Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System. Elsevier, Amsterdam, 136–138

    Google Scholar 

  • Zaborszky, L., Leranth, Cs., Makara, G. B. and Palkovits, M. (1975). Quantitative studies in the supraoptic nucleus in the rat. II. Afferent fibre connections. Exp. Brain Res., 22, 525–540

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, E. A. (1976). Localization of neurosecretory peptides in neuroendocrine tissues. In F. Naftolin, K. J. Ryan and J. Davies (eds.), Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier, Amsterdam, 81–108

    Google Scholar 

  • Zimmerman, E. A. and Antunes, J. L. (1976). Organization of the hypothalamic-pituitary system: current concepts from immunohistochemical studies. J. Histochem. Cytochem., 24, 807–815

    Article  PubMed  CAS  Google Scholar 

  • Zolovick, A. J. (1972). Effects of lesions and electrical stimulation of the amygdala on hypothalamic-hypophyseal regulation. In B. E. Eleftheriou (ed.), The Neurobiology of the Amygdala, Plenum Press, New York, 643–684

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1978 B. Cox, I. D. Morris and A. H. Weston

About this chapter

Cite this chapter

Kelly, J.S., Renaud, L.P. (1978). Pharmacology of hypothalamic neurones. In: Cox, B., Morris, I.D., Weston, A.H. (eds) Pharmacology of the Hypothalamus. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03506-9_4

Download citation

Publish with us

Policies and ethics