Pharmacology of hypothalamic neurones

  • J. S. Kelly
  • L. P. Renaud


In this chapter our aim is not so much to review the current literature on the neurophysiology and neuropharmacology of the hypothalamus, but rather to draw attention to the way in which the action of oxytocin on the contractile tissues of the lactating breast has allowed the neurophysiologist to explore the manner in which electrical activity in the magnocellular neurohypophyseal system is transformed into hormone release. Although there may be a similar causal relationship between electrical activity in the parvicellular or tuberoinfundibular system and the release of gonadotrophins (Dufy et al., 1974; Wuttke, 1974), an effect of these neurones on the release of other trophic or inhibitory substances involved in the regulation of adenohypophyseal secretion has yet to be established.


Thyrotrophin Release Hormone Median Eminence Neurosecretory Cell Pituitary Stalk Supraoptic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, V. C., Koelle, G. B., and Smart, P. (1957). Histochemical demonstration of cholinesterases in the hypothalamus of the dog. J. Physiol. (tond.), 139, 137–144CrossRefGoogle Scholar
  2. Arnauld, E., Dufy, B. and Vincent, J. D. (1975). Hypothalamic supraoptic neurones: rates and patterns of action potential firing during water deprivation in the unanaesthetised monkey. Brain Res., 100, 315–325PubMedCrossRefGoogle Scholar
  3. Arnauld, E., Vincent, J. D. and Dreifuss, J. J. (1974). Firing patterns of hypothalamic neurones during water deprivation in monkeys. Science, 185, 535–537PubMedCrossRefGoogle Scholar
  4. Barker, J. L., Crayton, J. W. and Nicoll, R. A. (1971a). Supraoptic neurosecretory cells: adrenergic and cholinergic sensitivity. Science, 171, 208–210PubMedCrossRefGoogle Scholar
  5. Barker, J. L., Crayton, J. N. and Nicoll, R. A. (197lb). Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J. Physiol. (Lond.), 218, 19–32Google Scholar
  6. Barker, J. L., Crayton, J. W. and Nicoll, R. A. (1971c). Antidromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells. Brain Res., 33, 353–366PubMedCrossRefGoogle Scholar
  7. Barry, J. and Dubois, M. P. (1975). Immunofluorescence study of LRF- producing neurons in the cat and the dog. Neuroendocrinology, 18, 290–298.PubMedCrossRefGoogle Scholar
  8. Barry, J., Dubois, M. P. and Carette, B. (1974). Immunofluorescence study of the preoptic-infundibular LRF neurosecretory pathway in the normal, castrated or testosterone-treated male guinea pig. Endocrinology, 95, 1416–1423PubMedCrossRefGoogle Scholar
  9. Bennett, J. P. Jr., Arregui, A. and Snyder, S. H. (1976). Angiotensin II as a possible mammalian central neurotransmitter: synaptic neurochemistry in normal mammalian and Huntington chorea brain tissue. Neurosci. Abstr., 2, 775.Google Scholar
  10. Bennett, C. T. and Pert, A. (1974). Antidiuresis produced by injections of histamine into the cat supraoptic nucleus. Brain Res., 78, 151–156PubMedCrossRefGoogle Scholar
  11. Bisset, G. W. (1968). The milk-ejection reflex and the action of oxytocin, vasopressin and synthetic analogues on the mammary gland. Neurohypophyseal hormones and similar polypeptides. In B. Berde (ed.), Handbook of Experimental Pharmacology, Chapt. 23, Springer-verlag, Berlin, 475–544Google Scholar
  12. Bisset, G. W. (1976). ‘Neurohypophyseal hormones’. In J. A. Parsons (ed.), Peptide Hormones, The Macmillan Press Ltd., London, 145–177CrossRefGoogle Scholar
  13. Blackwell, R. E. and Guillemin, R. (1973). Hypothalamic control of adenohypophyseal secretions. Ann. Rev. Physiol., 35, 357–370CrossRefGoogle Scholar
  14. Bloom, F. E., Oliver, A. P. and Salmoiraghi, G. C. (1963). The responsiveness of individual hypothalamic neurons to microelectrophoretically administered endogenous amines. Int. J. Neuropharmac., 2, 181–193CrossRefGoogle Scholar
  15. Brawer, J. (1972). The fine structure of the ependymal tanycytes at the level of the arcuate nucleus. J. Comp. NeuroL, 145, 25–42PubMedCrossRefGoogle Scholar
  16. Brawer, J. and Sonnenschein, C. (1975). Cytopathological effects of oestradiol on the arcuate nucleus of the female rat. A possible mechanism for pituitary tumorigenesis. Am. J. Anat., 144, 57–88PubMedCrossRefGoogle Scholar
  17. Brimble, M. J. and Dyball, R. E. J. (1977). Characterisation of the responses of oxytocin and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J. Physiol. (Lond.), 271, 253–271CrossRefGoogle Scholar
  18. Brownstein, M. J. (1977). Neurotransmitters and hypothalamic hormones in the central nervous system. Fed. Proc., 36, 1960–1963PubMedGoogle Scholar
  19. Brownstein, M. J., Palkovits, M., Saavedra, J. M. and Kizer, J. S. (1976). Distribution of hypothalamic hormones and neurotransmitters within the diencephalon. In L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Raven Press, New York 1–23Google Scholar
  20. Brownstein, M. J., Saavedra, J. M., Axelrod, J., Zeman, G. H. and Carpenter, D. O. (1974a). Coexistence of several putative neurotransmitters in single identified neurones of aplysia. Proc. Nat. Acad. Sci., 71, 4662–4655PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brownstein, M. J., Saavedra, J. M., Palkovits, M. and Axelrod, J. (1974b). Histamine content of hypothalamic nuclei of the rat. Brain Res., 77, 151–156PubMedCrossRefGoogle Scholar
  22. Buggy, J., Fisher, A. E., Hoffman, W. E., Johnson, A. K. and Phillips, M. I. (1975). Ventricular obstruction: effect of drinking induced by intracranial angiotensin. Science, 190, 72–74PubMedCrossRefGoogle Scholar
  23. Burnstock, G. (1976). Do some nerve cells release more than one transmitter? Neuroscience, 1, 239–248.PubMedCrossRefGoogle Scholar
  24. Burt, D. R., and Snyder, S. H. (1975). Thyrotrophin releasing hormone (TRH)-apparent receptor binding in rat brain membranes. Brain Res., 93, 309–328PubMedCrossRefGoogle Scholar
  25. Cajal, S. R. (1911). Histologie du Système Nerveux de l’Homme et des Vertèbres, Vol. 2, Naloine, ParisGoogle Scholar
  26. Christ, J. F. (1966). Nerve supply, blood supply and cytology of the neurohypophysis. In G. W. Harris and B. T. Donovan (eds.), The Pituitary Gland, University of California Press, Berkeley, Calif., 62–130Google Scholar
  27. Crawford, J. M. and Curtis, D. R. (1966). Pharmacological studies on feline Betz cells. J. Physiol. (Lond.), 186, 121–138CrossRefGoogle Scholar
  28. Cross, B. A., Dyball, R. E. J., Dyer, R. G., Jones, C. W., Lincoln, D. W., Morris, J. F. and Pickering, B. T. (1975). Endocrine neurones. Recent Prog. Hormone Res., 31, 243–294Google Scholar
  29. Cross, B..A. and Green, J. D. (1959). Activity of single neurones in the hypothalamus: effect of osmotic and other stimuli. J. Physiol. (Lond.), 148, 554–569CrossRefGoogle Scholar
  30. Cross, B. A., Moss, R. L. and Urban, I. (1971). Effect of iontophoretic application of acetylcholine and noradrenaline to antidromically identified paraventricular neurones. J. Physiol. (Lond.), 214, 28–30 PGoogle Scholar
  31. Cross, B. A. and Silver, I. A. (1966). Electrophysiological studies on the hypothalamus. Brit. Med. Bull., 22, 254–260PubMedGoogle Scholar
  32. Curtis, D. R. and Eccles, R. M. (1958). The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J. NeurophysioL, 141, 435–445Google Scholar
  33. Curtis, D. R. and Ryall, R. W. (1966a). The excitation of Renshaw cells by cholinomimetics. Expl. Brain Res., 2, 49–65Google Scholar
  34. Curtis, D. R. and Ryall, R. W. (1966b). The acetylcholine receptors of Renshaw cells. Expl. Brain Res., 2, 66–80Google Scholar
  35. Dale, H. A. (1935). Pharmacology and nerve endings. Proc. R. Soc. Med., 28, 319–332PubMedPubMedCentralGoogle Scholar
  36. De Wied, D., Witter, A. and Greven, H. M. (1975). Behaviourally active ACTH analogues. Biochemical Pharmacology, 24, 1463–1468PubMedCrossRefGoogle Scholar
  37. Dingledine, R. and Kelly, J. S. (1978). Cholinergic processes at synaptic junctions. In J. D. Feldman, N. B. Gilula and J. D. Pitts (eds.), Intercellular Junctions and Synapses in Development, Chapman and Hall, London, 141–179Google Scholar
  38. Dreifuss, J. J., Harris, M. C. and Tribollett, E. (1976a). Excitation of phasically firing hypothalamic supraoptic neurones by carotid occlusion in rats. J. Physiol. (Lond.), 257, 337–354CrossRefGoogle Scholar
  39. Dreifuss, J. J., Kalnins, I., Kelly, J. S. and Ruf, K. B. (1971).. Action potentials and release of neurohypophyseal hormones in vitro. J. Physiol. (Lond.) 215, 805–817Google Scholar
  40. Dreifuss, J. J. and Kelly, J. S. (1970). Excitation of identified supraoptic neurones by the iontophoretic application of acetylcholine. J. Physiol. (Lond.), 210, 170–172 PGoogle Scholar
  41. Dreifuss, J. J. and Kelly, J. S. (1972a). Recurrent inhibition of antidromically identified rat supraoptic neurones. J. Physiol. (Lond.), 220, 87–103CrossRefGoogle Scholar
  42. Dreifuss, J. J. and Kelly, J. S. (1972b). The activity of identified supraoptic neurones and their responses to acetylcholine applied by iontophoresis. J. Physiol. (Lond.), 220, 105–118CrossRefGoogle Scholar
  43. Dreifuss, J. J., Murphy, J. T. and Gloor, P. (1968). Contrasting effects of two identified amygdaloid efferent pathways on single hypothalamic neurones. J. Neurophysiol, 31, 237–248PubMedGoogle Scholar
  44. Dreifuss, J. J., Nordmann, J. J. and Vincent, J.-D. (1973). Recurrent inhibition of supraoptic neurosecretory cells in Brattleboro rats. J. Physiol. (Lond.), 237, 25–27 PGoogle Scholar
  45. Dreifuss, J. J., Tribollet, E. and Baertschi, A. J. (1976b). Excitation of supraoptic neurones by vaginal distention in lactating rats: correlation with neurohypophyseal hormone release. Brain Res., 113, 600–605PubMedCrossRefGoogle Scholar
  46. Dubois, M. P. and Kolodziejczyk, E. (1975). Centre hypothalamiques due rat secretant la somatostatine: reparition des pericaryons en 2 systems magno et parvocellulaires (études immunocytologiques). C. R. Acad. Sci. Paris, 281, 1737–1740Google Scholar
  47. Dufy, B., Dufy-Barbe, L. and Poulain, D. (1974). Gonadotropin release in relation to electrical activity in hypothalamic neurones. J. Neural Transmission, 35, 47–52CrossRefGoogle Scholar
  48. Dyball, R. E. J. (1971). Oxytocin and ADH secretion in relation to electrical activity on antidromically identified supraoptic and paraventricular units. J. Physiol. (Lond.), 214, 245–256CrossRefGoogle Scholar
  49. Dyball, R. E. J. (1974). Single unit activity in the hypothalamo-neurohypophyseal system system of Brattleboro rats. J. Endocrinol., 60, 135–143PubMedCrossRefGoogle Scholar
  50. Dyball, R. E. J. and Koizumi, K. (1969). Electrical activity in the supraoptic and paraventricular nuclei associated with neurohypophyseal hormone release. J. Physiol. (Lond.), 201, 711–722.CrossRefGoogle Scholar
  51. Dyer, R. G. and Dyball, R. E. J. (1974). Evidence for a direct effect of LRF and TRF on single unit activity in the rostral hypothalamus. Nature, 252, 486–488PubMedCrossRefGoogle Scholar
  52. Dyer, R. G., Macleod, D. N. K. and Ellendorf, F. (1976). Electrophysiological evidence for sexual dimorphism and synaptic convergence in the preoptic and anterior hypothalamic areas of the rat. Prot’. R. Soc. Lond. B., 193, 421–440CrossRefGoogle Scholar
  53. Eccles, J. C., Eccles, R. M. and Fatt, P. (1956). Pharmacological investigations on a central synapse operated by acetylcholine. J. Physiol. (Lond.), 131, 154–159CrossRefGoogle Scholar
  54. Eccles, J. C., Fatt, P. and Koketsu, K. (1954). Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol (Lond.), 126, 524–562CrossRefGoogle Scholar
  55. Epelbaum, J., Brazeau, P., Tsang, D. Brawer, J. and Martin, J. B. (1977). Subcellular distribution of radioimmunoassayable somatostatin in rat brain. Brain Res., 126, 309–324PubMedCrossRefGoogle Scholar
  56. Epstein, A. N., Fitzsimons, J. T. and Rolls, B. J. (1970). Drinking induced by injection of angiotensin into the brain of the rat. J. Physiol: (Lond.). 210, 457–474CrossRefGoogle Scholar
  57. Feldberg, W. and Vogt, M. (1948). Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. (Lond.), 107, 372–381CrossRefGoogle Scholar
  58. Felix, D. (1976). Peptide and acetylcholine action of neurones of the cat subfornical organ. Naunyn-Schmiedeberg:sArch. Pharmacol., 292, 15–20CrossRefGoogle Scholar
  59. Felix, D. and Akert, K. (1974). The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res., 76, 350–353PubMedCrossRefGoogle Scholar
  60. Felix, D. and Phillips, M. I. (1978). Effects of angiotensin II on central neurones. In R. W. Ryall and J. S. Kelly (eds.). Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, Elsevier/North Holland, Amsterdam, 104–106Google Scholar
  61. Freund-Mercier, M. J. and Richard, P. H. (1977). Spontaneous and reflex activity of paraventricular nucleus units in cycling and lactating rats. Brain Res., 130, 505–520PubMedCrossRefGoogle Scholar
  62. Fuxe, K., Ganten, D., Hôkfelt, T. and Bome, P. (1976). Immunohistochemical evidence for the existence of angiotensin II containing nerve terminals in the brain and spinal cord of the rat. Neurosci. Lett., 2, 229–234PubMedCrossRefGoogle Scholar
  63. Fuxe, K. and Hökfelt, T. (1967). The influence of central catecholamine neurones in the hormone secretion from the anterior and posterior pituitary. In F. Stutinsky (ed.). Neurosecretion, Springer, BerlinGoogle Scholar
  64. Ganten, D., Hutchinson, J. S., Schelling, J. P., Ganten, U. and Fischer, H. (1976). The iso-renin angiotensin systems in extra-renal tissue. Clin. Exp. Pharm. Physiol., 2, 103–126CrossRefGoogle Scholar
  65. Garbarg, M., Barbin, G., Feger, J. and Schwartz, J.-C. (1974). Histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle. Science, 186, 833–835PubMedCrossRefGoogle Scholar
  66. Ginsburg, M. (1968). Production, release, transportation and elimination of the neurohypophyseal hormones. In B. Berde (ed.), Handbook of Experimental Pharmacology, Springer-Verlag, Berlin, 286–371Google Scholar
  67. Ginsburg, M. and Brown, L. M. (1956). Effect of anaesthetics and haemorrhage on the release of neurohypophyseal antidiuretic hormone. Brit. J. Pharmacol. Chemother., 11, 236–244CrossRefGoogle Scholar
  68. Gordon, G. and Jukes, M. G. M. (1964). Descending influences on the exteroceptive organizations of the cat’s gracile nucleus. J. Physiol. (Lond.), 173, 291–319CrossRefGoogle Scholar
  69. Green, M. D., Simon, M. L. and Lomax, P. (1975). Histamine as a neurotransmitter in the central thermoregulatory pathways of the rat. Proc. West. Pharmacol. Soc., 18, 110–113PubMedGoogle Scholar
  70. Gronan, R. J. and York, D. H. (1976). Effect of angiotensin on cells in the preoptic area of rats. Neurosci Abst., 2, 426Google Scholar
  71. Haas, H. L. (1974). Histamine: action on single hypothalamic neurones. Brain Res, 76, 363–366PubMedCrossRefGoogle Scholar
  72. Haas, H. L., and Wolf, P. (1977). Central actions of histamine: microelectrophoretic studies. Brain Res., 122, 269–279PubMedCrossRefGoogle Scholar
  73. Haas, H. L., Wolf, P. and Nussbaumer, J. C. (1975). Histamine: action on supraoptic and other hypothalamic neurones of the cat. Brain Res., 88, 166–170PubMedCrossRefGoogle Scholar
  74. Halász, B. (1969). The endocrine effects of isolation of the hypothalamus from the rest of the brain. In W. F. Ganong and L. Martini (eds.), Frontiers in Neuroendocrinology, Oxford University Press, New York, 307–342Google Scholar
  75. Harris, G. W. (1955). Neural Control of Pituitary Gland. Edward Arnold, LondonGoogle Scholar
  76. Harris, G. W., Manabe, Y. and Ruf, K. B. (1969). A study of the parameters of electrical stimulation of unmyelinated fibers in the pituitary stalk. J. Physiol. (Lond.), 203, 67–81CrossRefGoogle Scholar
  77. Harris, M. C. and Sanghera, M. (1974). Projection of medial basal hypothalamic neurones to the preoptic anterior hypothalamic areas and the paraventricular nucleus in the rat. Brain Res., 81, 401–411PubMedCrossRefGoogle Scholar
  78. Haymaker, W., Anderson, E. and Nauta, W. J. H. (1969). The Hypothalamus, Thomas, SpringfieldGoogle Scholar
  79. Hayward, J. N. (1975). Neural control of the posterior pituitary. Ann. Rev. Physiol., 37, 191–210CrossRefGoogle Scholar
  80. Hayward, J. (1977). Functional and morphological aspects of hypothalamic neurones. Physiol. Rev., 57, 574–658PubMedGoogle Scholar
  81. Hayward, J. N. and Jennings, D. P. (1973). Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetised monkeys. Part II: Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone. J. Physiol. (Lond.), 232, 545–572CrossRefGoogle Scholar
  82. Ishida, A. (1970). The oxytocin and the compound action potential evoked by electrical stimulation of the isolated neurohypophysis of the rat. Jap. J. Physiol., 20, 84–96CrossRefGoogle Scholar
  83. Kandel, E. R. (1964). Electrical properties of hypothalamic neuroendocrine cells. J. gen. Physiol., 47, 691–717PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kawakami, M. and Sakuma, Y. (1974). Responses of hypothalamic neurons to the micro-iontophoresis of LH-RH, LH and FSH under various levels of circulating ovarian hormones. Neuroendocrinology, 15, 290–307PubMedCrossRefGoogle Scholar
  85. Kawakami, M. and Sakuma, Y. (1976). Electrophysiological evidence for possible participation of periventricular neurons in anterior pituitary regulation. Brain Res., 101, 79–94PubMedCrossRefGoogle Scholar
  86. Kelly, J. S. (1975). Microiontophoretic application of drugs onto single neurons. In L. L. Iversen, S. D. Iversen and S. H. Snyder (eds.), Handbook of Psychopharmacology Vol 2, Plenum Press, New York and London, 29–67Google Scholar
  87. Kelly, J. S. and Dreifuss, J. J. (1970). Antidromic inhibition of identified rat supraoptic neurones. Brain Res., 22, 406–409PubMedCrossRefGoogle Scholar
  88. Kelly, J. S., Simmonds, M. A. and Straughan, D. W. (1975). Microelectrode techniques. In P. B. Bradley (ed.), Methods in Brain Research, Wiley, New York, 333–337Google Scholar
  89. Koizumi, K., Ishikawa, T. and McC. Brooks, C. (1973). The existence of facilitatory axon collaterals in neurosecretory cells of the hypothalamus. Brain. Res., 63, 408–413PubMedCrossRefGoogle Scholar
  90. Koizumi, K. and Yamashita, H. (1972). Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings. J. Physiol. (Lond.), 221, 683–705CrossRefGoogle Scholar
  91. Krnjevic, K. and Phillis, J. W. (1963a). Acetylcholine-sensitive cells in the cerebral cortex J. Physiol. (Lond.), 166, 296–327CrossRefGoogle Scholar
  92. Krnjevic, K. and Phillis, J. W. (1963b). Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex. J. Physiol. (Lond.), 166, 328–350CrossRefGoogle Scholar
  93. Krnjevic, K., Pumain, R. and Renaud, L. (1971). The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. (Lond.), 215, 247–268CrossRefGoogle Scholar
  94. Leontovich, T. A. (1970). The neurons of the magnocellular neurosecretory nuclei of the dog’s hypothalamus. J. Hirnforsch., 11, 499–517Google Scholar
  95. Léránth, Cs., Zaborszky, L., Marton, J. and Palkovits, M. (1975). Quantitative studies on the supraoptic nucleus in the rat. I. Synaptic organization. Exp. Brain Res., 22, 509–523PubMedCrossRefGoogle Scholar
  96. Lichtensteiger, W. and Keller, P. J. (1974). Tubero-infundibular dopamine neurons and the secretion of luteinizing hormone and prolactin: extrahypothalamic influences, interaction with cholinergic systems and the effect of urethane anesthesia, Brain Res. 74 279–303PubMedCrossRefGoogle Scholar
  97. Lincoln, D. W. and Wakerley, J. B. (1974). Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin. J. Physiol. (Lond.), 242, 533–554PubMedCentralCrossRefGoogle Scholar
  98. Lincoln, D. W. and Wakerley, J. B. (1975). Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat. J. Physiol. (Lond.) 250 443–461CrossRefGoogle Scholar
  99. Makara, G. B., Harris, M. C. and Spyer, K. M. (1972). Identification and distribution of tubero-infundibular neurones. Brain Res., 40, 283–290PubMedCrossRefGoogle Scholar
  100. Moss, R. L. (1976). Unit responses in preoptic and arcuate neurons related to anterior pituitary function. In: L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Vol 4, Raven Press, New York, 95–128Google Scholar
  101. Moss, R. L. (1977). Role of hypophysiotropic neurohormone in mediating neural and behavioural events. Fed. Proc., 36, 1978–1983PubMedGoogle Scholar
  102. Moss, R. L., Dyball, R. E. J. and Cross, B. A. (1972a). Excitation of antidromically identified neurosecretory cells in the paraventricular nucleus by oxytocin applied iontophoretically. Exp. Neurol., 34, 95–102PubMedCrossRefGoogle Scholar
  103. Moss, R. L., Kelly, M. and Riskind, P. (1975). Tubero-infundibular neurons: dopaminergic and norepinephrinergic sensitivity. Brain Res., 89, 265–277PubMedCrossRefGoogle Scholar
  104. Moss, R. L., Urban, I. and Cross, B. A. (1972b). Microelectrophoresis of cholinergic and aminergic drugs on paraventricular neurons. Am. J. Physiol., 223, 310–318PubMedGoogle Scholar
  105. Mroz, E. A., Brownstein, M. J. and Leeman, S. E. (1976). Evidence for substance P in the habenulo-interpeduncular tract. Brain Res., 113, 597–599PubMedCrossRefGoogle Scholar
  106. Murphy, J. T. and Renaud, L. P. (1969). Mechanisms of inhibition in the ventromedial nucleus of the hypothalamus. J. Neurophysiol., 32, 85–102PubMedGoogle Scholar
  107. Negoro, H. and Holland, R. C. (1972). Inhibition of unit activity in the hypothalamic paraventricular nucleus following antidromic activation. Brain Res., 42, 385–402PubMedCrossRefGoogle Scholar
  108. Negoro, H., Visessuwan, S. and Holland, R. C. (1973). Inhibition and excitation of units in paraventricular nucleus after stimulation of the septum, amygdala and neurohypophysis. Brain Res., 57, 479–483PubMedCrossRefGoogle Scholar
  109. Nicoll, R. A. and Barker, J. L. (1971a). Excitation of supraoptic neurosecretory cells by angiotensin II. Nature New Biol., 233, 172–174PubMedCrossRefGoogle Scholar
  110. Nicoll, R. A. and Barker, J. L. (197lb). The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. Brain Res., 35, 501–511Google Scholar
  111. Novin, D., Sundsten, J. W., and Cross, B. A. (1970). Some properties of antidromically activated units in the paraventricular nucleus of the hypothalamus. Expl. Neurol. 26, 330–341CrossRefGoogle Scholar
  112. Olivecrona, H. (1957). Paraventricular nucleus and pituitary gland. Acta Physiol. Scand., 40, Suppl. 136, 1–178Google Scholar
  113. Oomura, Y., Ono, T. and Ooyama, H. (1970). Inhibitory action of the amygdala on the central hypothalamic area in rats. Nature, 228, 1108–1110PubMedCrossRefGoogle Scholar
  114. Oomura, Y., Ono, T., Sugimori, M. and Wayner, M. J. (1976). Acetylcholine, an inhibitory transmitter on the rat lateral hypothalamus. Brain Res Bull., 1, 151–153PubMedCrossRefGoogle Scholar
  115. Parry, H. B. and Livett, B. G. (1976). Neurophysin in the brain and pituitary gland of normal and scrapie-affected sheep. Part I: Its localization in the hypothalamus and neurohypophysis with particular reference to a new hypothalamic neurosecretory pathway to the median eminence. Neuroscience, 1, 275–299PubMedCrossRefGoogle Scholar
  116. Phillips, M. I. and Felix, D. (1976). Specific angiotensin II receptive neurons in the cat subfornical organ. Brain Res., 109, 531–540PubMedCrossRefGoogle Scholar
  117. Phillis, J. W., Kostopoulos, G. K. and Odutola, A. (1975). On the specificity of histamine H2 -receptor antagonists in the rat cerebral cortex. Canad. PhysioL Pharma col., 53, 1205–1209CrossRefGoogle Scholar
  118. Phillis, J. W. and Limacher, J. J. (1974). Excitation of cerebral cortical neurons by various polypeptides. Exp. Neurol, 43, 414–423PubMedCrossRefGoogle Scholar
  119. Phillis, J. W., Tebecis, A. K. and York, D. H. (1968). Histamine and some antihistamines: their actions on cerebral cortical neurones. Brit. J. Pharmacol., 33, 426–440PubMedPubMedCentralGoogle Scholar
  120. Pickford, M. (1939). The inhibitory effect of acetylcholine on diuresis in the dog and its pituitary transmission. J. PhysioL (Lond.), 95, 226–238CrossRefGoogle Scholar
  121. Pittman, Q. J., Blume, H. W., MacKenzie, B. W. and Renaud, L. P. (1977). GABA and glycine and synaptic inhibition in the hypothalamic ventromedial nucleus of the rat. Canad. PhysioL, 8, 56Google Scholar
  122. Plotnikoff, N. P. and Kastin, A. J. (1976). Neuropharmacology of hypothalamic releasing factors. Biochemical Pharmacology, 25, 363–365PubMedCrossRefGoogle Scholar
  123. Porter, J. C., Kameri, I. A. and Grazia, Y. R. (1971). Pituitary blood flow and portal vessels. In L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Oxford University Press, Oxford, 145–175Google Scholar
  124. Poulain, D. A., Wakerley, J. B. and Dyball, R. E. J. (1977). Electrophysiological differentiation of oxytocin- and vasopressin-secreting neurones. Proc. Roy. Soc. Lond. B., 196, 367–384CrossRefGoogle Scholar
  125. Prange, A. J. Jr., Nemeroff, C. B., Lipton, M. A., Breese, G. R. and Wilson, I. C. (1978). Peptides and the central nervous system. In L. L. Iversen, S. D. Iversen and S. H. Snyder (eds.), Handbook of Psychopharmacology, Vol. 13, Plenum Press, New York, to be publishedGoogle Scholar
  126. Ramirez, V. D., Gautron, J. P., Epelbaum, J., Pattou, E., Zamura, A. and Kordon, C. (1975). Distribution of LH-RH in subcellular fractions of the basomedial hypothalamus. Mol. Cell. EndocrinoL, 3, 339–350PubMedCrossRefGoogle Scholar
  127. Renaud, L. P. (1975). Electrophysiological evidence to suggest that hypothalamic releasing (inhibiting) peptides may be liberated from nerve terminals in the CNS. Neurosci. Abstr., 1, 441Google Scholar
  128. Renaud, L. P. (1976a). Tuberoinfundibular neurons in the basomedial hypothalamus of the rat: electrophysiological evidence for axon collaterals to hypothalamic and extrahypothalamic areas. Brain Res., 105, 59–72PubMedCrossRefGoogle Scholar
  129. Renaud, L. P. (1976b). Tuberoinfundibular neurons: electrophysiological studies on afferent and efferent connections. The Physiologist, 19, 388Google Scholar
  130. Renaud, L. P. (1976c). Influence of amygdala stimulation on the activity of identified tuberoinfundibular neurons in the rat hypothalamus. J. PhysioL (Lond.)., 260 237–252PubMedCentralCrossRefGoogle Scholar
  131. Renaud, L. P. (1976d). An electrophysiological study of amygdalo-hypothalamic projections to the ventromedial nucleus of the rat. Brain Res., 105, 45–58PubMedCrossRefGoogle Scholar
  132. Renaud, L. P. (1976e). Response of identified ventromedial hypothalamic nucleus neurons to putative neurotransmitters applied by microiontophoresis. Brit. J. PharmacoL, 55, 277–278 PGoogle Scholar
  133. Renaud, L. P. (1977a). Influence of medial preoptic-anterior hypothalamic area stimulation on the excitability of mediobasal hypothalamic neurones in the rat. J. Physiol. (Lond.), 264, 541–564CrossRefGoogle Scholar
  134. Renaud, L. P. (1977b). TRH, LH-RH and somatostatin: distribution and physiological action in neural tissue. In W. M. Cowan and J. A. Ferendelli (eds.),Neuroscience Symposia, Vol. 2, Raven Press, New York, 265–290Google Scholar
  135. Renaud, L. P. (1978a). Influence of peptides and putative neurotransmitters on the excitability of identified hypothalamic neurons. In R. W. Ryall and J. S. Kelly (eds.), Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System. Elsevier, Amsterdam, 127–129Google Scholar
  136. Renaud, L. P. (1978b). Neurophysiological organization of the Endocrine Hypothalamus. Association for Research in Nervous and Mental Disease Research Publication, Vol. 56, in S. Reichlin, R. J. Baldessarini and J. B. Martin (eds.), The Hypothalamus Raven Press, New York, 269–301 (in press)Google Scholar
  137. Renaud, L. P. and Martin, J. B. (1975). Electrophysiological studies of connections of hypothalamic ventromedial nucleus neurons in rat-evidence for a role in neuroendocrine regulation. Brain Res., 93, 145–151PubMedCrossRefGoogle Scholar
  138. Renaud, L. P., Martin, J. B. and Brazeau, P. (1975). Depressant action of TRH, LH-RH and somatostatin on activity of central neurons. Nature, 255, 233–235PubMedCrossRefGoogle Scholar
  139. Renaud, L. P., Martin, J. B. and Brazeau, P. (1976). Hypothalamic releasing factors: physiological evidence for a regulatory action on central neurons and pathways for their distribution in brain. Pharmacol. Biochem. Behay., 5, Suppl. 1, 171–178Google Scholar
  140. Roberts, J. S. (1971). Progesterone-inhibition of oxytocin release during vaginal distention: evidence for a central site of action. Endocrinology, 89, 1137–1141PubMedCrossRefGoogle Scholar
  141. Roberts, J. S. (1973). Functional integrity of the oxytocin-release reflex in goats: dependence on oestrogen. Endocrinology, 93, 1309–1314PubMedCrossRefGoogle Scholar
  142. Roberts, J. S. (1975). Cyclical fluctuations in reflexive oxytocin release during the oestrous cycle of the goat. Biol. Reproduct., 13, 314–317CrossRefGoogle Scholar
  143. Roberts, J. S. and Share, L. (1969). Effects of progesterone and oestrogen on blood levels of oxytocin during vaginal distention. Endocrinology, 84, 1076–1081PubMedCrossRefGoogle Scholar
  144. Roberts, J. S. and Share, L. (1970). Inhibition by progesterone of oxytocin secretion during vaginal stimulation. Endocrinology, 87, 812–815PubMedCrossRefGoogle Scholar
  145. Sakai, K. K., Marks, B. H., George, J. M. and Koestner, A. (1974). Specific angiotensin II receptors in organ-cultured canine supraoptic nucleus cells. Life Sa., 14, 1337–1344CrossRefGoogle Scholar
  146. Sawaki, Y. and Yagi, K. (1973). Electrophysiological identification of cell bodies of the tuberoinfundibular neurons in the rat. J. Physiol. (Lond.), 230, 75–85CrossRefGoogle Scholar
  147. Sawaki, Y. and Yagi, K. (1976). Inhibition and facilitation of antidromically identified tuberoinfundibular neurons following stimulation of the median eminence in the rat. J. Physiol. (Load.), 260, 447–460CrossRefGoogle Scholar
  148. Schally, A. V., Arimura, A. and Kastin, A. J. (1973). Hypothalamic regulatory hormones. Science, 179, 341–350PubMedCrossRefGoogle Scholar
  149. Schwartz, J.-C. (1975). Histamine as a transmitter in brain. Life Sci., 17, 503–528PubMedCrossRefGoogle Scholar
  150. Severs, W. B. and Daniels-Severs, A. E. (1973). Effects of angiotensin on the central nervous system. Pharmacol. Rev., 25, 415–449PubMedGoogle Scholar
  151. Shute, C. C. D. (1970). Distribution of cholinesterase and cholinergic pathways. In L. Martini, M. Motta and F. Fraschini (eds.), The Hypothalamus, Academic Press, New York, 167–179Google Scholar
  152. Silverman, A. J. (1976). Ultrastructural studies on the localization of neurohypophyseal hormones and their carrier proteins. J. Histochem. Cytochem., 24, 816–827PubMedCrossRefGoogle Scholar
  153. Simpson, J. B. and Routtenberg, A. (1973). Subfornical organ: site of drinking elicitation by angiotensin II. Science, 181, 1172–1175PubMedCrossRefGoogle Scholar
  154. Sirett, N. E., McLean, A. S., Bray, J. J. and Hubbard, J. I. (1977). Distribution of angiotensin II receptors in rat brain. Brain Res., 122, 299–312PubMedCrossRefGoogle Scholar
  155. Spehlmann, R. (1963). Acetylcholine and prostigmine electrophoresis at visual cortex neurones. J. Physiol. (Loud.), 26, 127–139Google Scholar
  156. Swanson, L. W. (1977). Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res., 128, 346–353PubMedCrossRefGoogle Scholar
  157. Szentágothai, J., Flerko, B., Mess, B. and Halász, B. (1968). Hypothalamic control of the anterior pituitary, Akademiai Kiado, BudapestGoogle Scholar
  158. Wakerley, J. B. and Lincoln, D. W. (1973). The milk ejection reflex of the rat: a 20-to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release. J. Endocrinol., 57, 477–493PubMedCrossRefGoogle Scholar
  159. Wakerley, J. B., Poulain, D. A., Dyball, R. E. J. and Cross, B. A. (1975). Activity of phasic neurosecretory cells during haemorrhage. Nature, 258 82–84PubMedCrossRefGoogle Scholar
  160. Wayner, M. J., Ono, T. and Nolley, D. (1973). Effects of angiotensin II in central neurones. Pharmac. Biochem. Behay., 1, 679–691CrossRefGoogle Scholar
  161. Wilber, J. F., Montoya, E., Plotnikoff, N., White, W. F., Gendrich, N. P., Renaud, L. and Martin, J. B. (1976). Gonadotrophin-releasing hormone and thyrotrophin-releasing hormone: distribution and effects in the central nervous system. Recent Prog. Hormone Res., 32, 117–153Google Scholar
  162. Wimersma Greidanus, Tj. B., Bohus, B. and de Wied, D. (1975). The role of vasopressin in memory processes. In W. H. Gispen, Tj. B. Van Wimersma Greidanus, B. Bohus and D. de Wied (eds.), Progress in Brain Research, Vol. 42, Elsevier, Amsterdam, 135–141Google Scholar
  163. Wolf, P. and Monnier, M. (1973). Electroencephalographic, behavioural and visceral effects of intraventricular infusion of histamine in the rabbit. Agents and Actions, 3, 196PubMedCrossRefGoogle Scholar
  164. Wurtmann, R. J. (1970). Neuroendocrine transducer cells in mammals. In F. O. Schmitt (ed.), The Neurosciences Second Study Program, Rockefeller University Press, New York, 530–538Google Scholar
  165. Wurtman, R. J. (1971). Brain monoamines and endocrine function. Neuroscience Res. Prog. Bull., 9, 171–297Google Scholar
  166. Wuttke, W. (1974). Preoptic unit activity and gonadotropin release. Exp. Brain Res., 19, 205–216PubMedCrossRefGoogle Scholar
  167. Yagi, K., Azuma, T. and Matsuda, K. (1966). Neurosecretory cell: capable of conducting impulse in rats. Science, 154, 778–779PubMedCrossRefGoogle Scholar
  168. Yagi, K. and Sawaki, Y. (1974). Recurrent inhibition and facilitation demonstration in the tuberoinfundibular system and effects of strychnine and picrotoxin. Brain Res., 84, 155–159CrossRefGoogle Scholar
  169. Yamashita, H., Koizumi, K. and Brooks, C. McC. (1970). Electrophysiological studies of neurosecretory cells in the cat hypothalamus. Brain Res., 20, 462–466PubMedCrossRefGoogle Scholar
  170. Yarbrough, G. G., Haubrich, D. R. and Schmidt, D. E. (1978). Thyrotrophin releasing hormone (TRH) and MK-771 interaction with CNS cholinergic mechanisms. In R. W. Ryall and J. S. Kelly (eds.), Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System. Elsevier, Amsterdam, 136–138Google Scholar
  171. Zaborszky, L., Leranth, Cs., Makara, G. B. and Palkovits, M. (1975). Quantitative studies in the supraoptic nucleus in the rat. II. Afferent fibre connections. Exp. Brain Res., 22, 525–540PubMedCrossRefGoogle Scholar
  172. Zimmerman, E. A. (1976). Localization of neurosecretory peptides in neuroendocrine tissues. In F. Naftolin, K. J. Ryan and J. Davies (eds.), Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier, Amsterdam, 81–108Google Scholar
  173. Zimmerman, E. A. and Antunes, J. L. (1976). Organization of the hypothalamic-pituitary system: current concepts from immunohistochemical studies. J. Histochem. Cytochem., 24, 807–815PubMedCrossRefGoogle Scholar
  174. Zolovick, A. J. (1972). Effects of lesions and electrical stimulation of the amygdala on hypothalamic-hypophyseal regulation. In B. E. Eleftheriou (ed.), The Neurobiology of the Amygdala, Plenum Press, New York, 643–684CrossRefGoogle Scholar

Copyright information

© B. Cox, I. D. Morris and A. H. Weston 1978

Authors and Affiliations

  • J. S. Kelly
    • 1
  • L. P. Renaud
    • 2
  1. 1.MRC Neurochemical Pharmacology Unit, Department of PharmacologyMedical SchoolCambridgeUK
  2. 2.Division of NeurologyMontreal General HospitalMontrealCanada

Personalised recommendations