The transmitters of the hypothalamus

  • K. Fuxe
  • T. Hökfelt
  • K. Andersson
  • L. Ferland
  • O. Johansson
  • D. Ganten
  • P. Eneroth
  • J.-A. Gustafsson
  • P. Skett
  • S. I. Said
  • V. Mutt


Monoamines, GABA and acetylcholine are the best-known transmitters of the hypothalamus (Fuxe and Hökfelt, 1969; Fuxe and Jonsson, 1974: Björklund et al., 1973; Carlsson et al., 1962; Dahlström and Fuxe, 1964; Hökfelt et al., 1974b; Ungerstedt, 1971; Roberts, 1975; Roberts et al., 1975; Tappaz et al., 1976; Vogt, 1954; Snyder and Taylor, 1972; Brownstein et al., 1975b; Fuxe et al., 1976b; Hökfelt et al., 1978). Recently evidence has accumulated that hypothalamic hormones such as luteinising hormone releasing hormone (LH-RH), somatostatin, thyrotrophin releasing hormone (TRH) and other types of peptides such as substance P and enkephalin can also subserve a transmitter or a modulator role (changing the action of a transmitter) at synaptic junctions within the hypothalamus (Barry and Dubois, 1974; Brownstein et al., 1975a; Brownstein et al., 1974; Elde et al., 1976a; von Euler and Gaddum, 1931; Fuxe et al., 1976a; Fuxe et al., 1976b; Ganten et al., 1975; Giachetti et al., 1976; Guillemin, 1978; Guillemin et al., 1976; Elde et al., 1976b; Hökfelt et al., 1974a; Hökfelt et al., 1975b; Hökfelt et al., 1975c; Hökfelt et al., 1975e; Reichlin et al., 1976; Renaud et al., 1975; Said and Rosenberg, 1976 Vanderhaeghen et al., 1975; Zimmerman, 1976; Larsson et al., 1976; Fuxe et al., 1977d; Hökfelt et al., 1978). In the present article the distribution of the various monoamine-, GABA-, acetylcholine- and peptide-containing neurones within the hypothalamus will be described. The article will then describe how monoamine systems can control activity in hypothalamic hormone-containing pathways and in other types of peptide-containing pathways. Finally, how the various types of transmitters and/or modulators can influence activity in the catecholamine (CA) systems of the hypothalamus, will be discussed with particular reference to the dopamine (DA) systems in the median eminence.


Tyrosine Hydroxylase Nerve Terminal Vasoactive Intestinal Polypeptide External Layer Median Eminence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnati, L., Fuxe, K., Lofström, A. and Hökfelt, T. (1977). Dopaminergic drugs and ovulation: studies on PMS-induced ovulation and changes in median eminence DA and NE turnover in immature female rats. In E. Costa and G. L. Gessa (eds.), Advances in Biochemical Psychopharmacology, Vol. 16, Raven Press, New York, 159–168Google Scholar
  2. Andén, N. E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L. and Ungerstedt, U. (1966). Ascending monoamine neurones to the telencephalon and diencephalon. Acta Physiol Scand., 67, 313–326CrossRefGoogle Scholar
  3. Andersson, K., Fuxe, K., Eneroth, P., Gustafsson, J-A. and Skett, P. (1977). On the catecholamine control of growth hormone regulation. Evidence for discrete changes in dopamine and noradrenaline turnover following growth hormone administration. Neuroscience Lett., 5, 83–89CrossRefGoogle Scholar
  4. Barry, J. and Dubois, M. P. (1974). Immunofluorescence study of the preoptico-infundibular LH-RH neurosecretory pathway of the guinea-pig during the estrous cycle. Neuroendocrinology, 15, 200–208CrossRefGoogle Scholar
  5. Björklund, A., Moore, R. Y., Nobin, A. and Stenevi, U. (1973). The organisation of the toberohypophyseal and reticulo-infundibular catecholamine neurone systems in the rat brain. Brain Res., 51, 171–191CrossRefGoogle Scholar
  6. Bloom, F., Battenberg, E., Rossier, J., Ling, N., Leppaluoto, J., Vargo, T. M. and Guillemin, R. (1977). Endorphines are located in the intermediate and anterior lobes of the pituitary gland, not in the neurohypophysis. Life Sci., 20, 40–48CrossRefGoogle Scholar
  7. Brown, W. A., Krieger, D. T., Van Woert, M. H. and Ambani, L. M. (1974). Dissociation of growth hormone and cortisol release following apomorphine. J. clin. Endocr. Metab., 38, 1127–1130CrossRefGoogle Scholar
  8. Brownstein, M., Arimara, A., Sato, H., Schally, A. V. and Kizer, J. S. (1975a). The regional distribution of somatostatin in the rat brain. Endocrinology, 96, 1456–1461CrossRefGoogle Scholar
  9. Brownstein, M., Kobayashi, R., Palkovits, M. and Saavedra, J. M. (1975b). Choline acetyltransferase levels in diencephalic nuclei of the rat. J. Neurochem., 24, 35–38CrossRefGoogle Scholar
  10. Brownstein, M., Palkovits, M., Saavedra, J. M., Bassin, R. and Unger, R. D. (1974). Thyrotropin-releasing hormone in specific nuclei of rat brain. Science, 185, 267–269CrossRefGoogle Scholar
  11. Brownstein, M., Palkovits, M., Tappaz, M., Saavedra, J. and Kizer, S. (1976). Effect of surgical isolation of the hypothalamus on its neurotransmitter content. Brain Res., 117, 287–295CrossRefGoogle Scholar
  12. Carlsson, A., Falck, B. and Hillarp, N. A. (1962). Cellular localisation of brain monoamines. Acta Physiol. Scand., 56 (Suppl. 196), 1–28Google Scholar
  13. Chan-Palay, V. (1977). Indoleamine neurons and their processes in the normal rat brain and in chronic diet-induced thiamine deficiency demonstrated by uptake of 3H-serotonin. J. comp. NeuroL, 176, 467–494CrossRefGoogle Scholar
  14. Christenson, J. G., Dairman, W. and Udenfriend, S. (1972). On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase. Proc. Nat. Acad. Sci. (Wash.)., 69, 343–347CrossRefGoogle Scholar
  15. Dahlstrom, A. and Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. Part I: Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand., 62 (Suppl. 232), 1–55Google Scholar
  16. Dupont, A., Cusan, L., Garon, M., Labrie, F. and Li, C. H. (1977a). ß-Endorphin: stimulation of growth hormone release in vivo. Proc. Nat. Acad. Sci, USA, 74, 358–359CrossRefGoogle Scholar
  17. Dupont, A., Cusan, L., Labrie, F., Coy, D. H. and Li, C. H. (1977b). Stimulation of prolactin release in the rat by intraventricular injection of ß-endorphin and methionine-enkephalin. Biochem. Biophys. Res. Comm., 75, 76–82CrossRefGoogle Scholar
  18. Elde, R. P., Hökfelt, T., Johansson, O., Efedió, O. and Luft, R. (1976a). Somatostatin containing pathways in the nervous system. Neurosci Abstr., 2, 759Google Scholar
  19. Elde, R. P., Hökflet, T., Johansson, O. and Terenius, L. (1976b). Immunohistochemical studies using antibodies to leucine-enkephalin. Initial observations on the nervous system of the rat. Neuroscience, 1, 349–351CrossRefGoogle Scholar
  20. Eneroth, P., Fuxe, K., Gustafsson, J. -A., Hökfelt, T., Löfström, A., Skett, P. and Agnati, L. (1977a). The effect of nicotine on central catecholamine neurons and gondatropin secretion. Part II: Inhibitory influence of nicotine on LH, FSH and prolactin secretion in the ovariectomised female rat and its relation to regional changes in dopamine and noradrenaline levels and turnover. Med. Biol., 55, 158–166Google Scholar
  21. Eneroth, P., Fuxe, K., Gustafsson, J. -A., Hökfelt, T., Löfström, A., Skett, P. and Agnati, L. (1977b). The effect of nicotine on central catecholamine neurons and gonadotropin secretion. Part III: Studies on prepubertal female rats treated with pregnant mare serum gonadotropin. Med. Biol., 55, 167–176.Google Scholar
  22. von Euler, U. S. and Gaddum, J. H. (1931). An unidentified depressor substance in certain tissue extracts. J. Physiol. (Loud.), 72, 74–87CrossRefGoogle Scholar
  23. Ferland, L., Fuxe, K., Eneroth, P., Gustafsson, J. -A. and Skett, P. (1977). Effects of methionine-enkephalin on prolactin release and catecholamine levels and turnover in the median eminence. Europ. J. PharmacoL, 43, 89–90CrossRefGoogle Scholar
  24. Fuxe, K. (1964). Cellular localisation of monoamines in the median eminence and the infundibular stem of some mammals. Z. Zellforsch., 61, 710–724CrossRefGoogle Scholar
  25. Fuxe, K. (1965). Evidence for the existence of monoamine neurons in the central nervous system. Part IV: The distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand., 64 (Suppl. 247), 39–85Google Scholar
  26. Fuxe, K., Agnati, L., Eneroth, P., Gustafsson, J. -A., Hökfelt, T., Löfström, A., Skett, B. and Skett, P. (1977a). The effect of nicotine on central catecholamine neurons and gonadotropin secretion. Part I: Studies in the male rat. Med. Biol., 55, 148–157Google Scholar
  27. Fuxe, K., Eneroth, P., Gustafsson, J. -A., Löfström, A. and Skett, P. (1977b). Dopamine in the nucleus accumbens: preferential increase of DA turnover by rat prolactin. Brain Res., 122, 177–182CrossRefGoogle Scholar
  28. Fuxe, K., Ferland, L., Andersson, K., Eneroth, P., Gustafsson, J. -A. and Skett, P. (1978). On the functional role of hypothalamic catecholamine neurons in control of the secretion of hormones from the anterior pituitary, particularly in the control of LH and prolactin secretion. In D. Scott (ed.), Brain-Endocrine Interaction, Vol. III, Neural Hormones and Reproduction, 3rd Int. Symp. Würzburg, 1977, 172–182Google Scholar
  29. Fuxe, K., Ganten, D., Hökfelt, T. and Bolme, P. (1976a). Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminals in the brain and spinal cord in the rat. Neurosci. Lett., 2, 229–234CrossRefGoogle Scholar
  30. Fuxe, K. and Hökfelt, T. (1969). Catecholamines in the hypothalamus and the pituitary gland. In W. F. Ganong and L. Martini (eds.), Frontiers in Neuroendocrinology, Vol 1, Oxford University Press, New York, 47–96Google Scholar
  31. Fuxe, K. and Hökfelt, T. (1975). The effects of hormones and psychoactive drugs on the tubero-infundibular neurons. In Some Aspects of Hypothalamic Regulation of Endocrine Functions, F. K. Schattauer Verlag, Stuttgart/New York, 51–61Google Scholar
  32. Fuxe, K., Hökfelt, T., Eneroth, P., Gustafsson, J. -A. and Skett, P. (1977c). Prolactin-like immunoreactivity: localisation in nerve terminals of rat hypothalamus. Science, 196, 899–900CrossRefGoogle Scholar
  33. Fuxe, K., Hökfelt, T., Johansson, O., Ganten, D., Goldstein, M., Perez de la Mora, M., Possani, L., Tapia, R., Teran, L., Palacios, R., Said, S. and Mutt, V. (1976b). Monoamine neuron systems in the hypothalamus and their relation to the GABA and peptide containing neurons. In R. Mornex and J. Barry (eds.), Colloque de Synthèse des Actions Thématiques 22 et 35. Neuromediateurs et Polypeptides Hypothalamiques à Action Relkchante ou Inhibitrice, Institut National de la Santè et de la Recherche Mèdicale, Paris, 17–40Google Scholar
  34. Fuxe, K., Hökfelt, T., Löfström, A., Johansson, O., Agnati, L., Everitt, B., Goldstein, M., Jeffcoate, S., White, N., Eneroth, P., Gustafsson, J. -A. and Skett, P. (1976c). On the role of neurotransmitters and hypothalamic hormones and their interactions in hypothalamic and extrahypothalamic control of pituitary function and sexual behavior. In F. Naftolin, K. J. Ryan and J. Davies (eds.), Subcellular Mechanisms in Reproductive Neuroendocrinology, Elsevier Scientific Pub. Co., Amsterdam, 193–246Google Scholar
  35. Fuxe, K., Hökfelt, T., Said, S. I. and Mutt, V. (1977d). Vasoactive intestinal polypeptide and the nervous system:-immunohistochemical evidence for localisation in central and peripheral neurons, particularly intracortical neurons of the cerebral cortex. Neurosci. Lett., 5, 241–246CrossRefGoogle Scholar
  36. Fuxe, K. and Jonsson, G. (1974). Further mapping of central 5-hydroxytryptamine neurons: studies with the neurotoxic dihydroxytryptamines. In E. Costa, G. L. Gessa and M. Sandler (eds.), Advances in Biochemical Psychopharmacology, Vol. 10, Serotonin: New Vistas, Histochemistry and Pharmacology, Raven Press, New York, 1–12Google Scholar
  37. Fuxe, K., Löfström, A., Agnati, L., Hökfelt, T., Johansson, O., Eneroth, P., Gustafsson, J. -A., Skett, P., Jeffcoate, S. and Fraser, H. (1977e). Functional morphology of the median eminence. On the involvement of catecholamines in the control of FSH, LH and prolactin secretion. In P.O. Hubinont, M. L’Hermite and C. Robyn (eds.), Progress in Reproductive Biology, Vol. 2. Clinical Reproductive Neuroendocrinology, Karger, Basel, 41–53Google Scholar
  38. Fuxe, K., Löfström, A., Eneroth, P., Gustafsson, J. -A., Skett, P., Hökfelt, T., Wiesel, F. -A. and Agnati, L. (1977f). Involvement of central catecholamines in the feedback actions of 17 p-estradiolbenzoate on luteinizing hormone secretion in the ovariectomized female rat. Psychoneuroendocrinology, 2, 203–225CrossRefGoogle Scholar
  39. Ganong, W. F. (1973). Catecholamines and the secretion of renin. ACTH and growth hormone. In E. Usdin and S. Snyder (eds.), Frontiers in Catecholamine Research, Pergamon Press, New York, 819–824CrossRefGoogle Scholar
  40. Ganten, D., Fuxe, K., Phillips, M. I., Mann, J. F. E. and Ganten, U. (1978). The brain isorenin-angiotensin system: biochemistry, localization and possible role in drinking and blood pressure regulation. In W. F. Ganong and L. Martini (eds.), Frontiers in Neuroendocrinology, Raven Press, New York, 61–99Google Scholar
  41. Ganten, D., Hutchinson, J. S., Schelling, P., Ganten, U. and Fischer, H. (1975). The isorenin angiotensin systems in extrarenal tissue. Clin. exp. Pharmacol. PhysioL, 2, 127–151Google Scholar
  42. Giachetti, A., Rosenberg, R. N. and Said, S. I. (1976). Vasoactive intestinal polypeptide in brain synaptosomes. Lancet, ii, 741–742CrossRefGoogle Scholar
  43. Grandison, L. and Meites, J. (1976). Evidence for adrenergic mediation of cholinergic inhibition of prolactin release. Endocrinology, 99, 775–779CrossRefGoogle Scholar
  44. Guillemin, R. (1978). Biochemical and physiological correlates of hypothalamic peptides. The new endocrinology of the neuron. In S. Reichlin, R. J. Baldessarini and J. B. Martin (eds.). The Hypothalamus (ARNMD, Vol. 56 ), Raven Press, New York, 155–194Google Scholar
  45. Guillemin, R., Ling, N. and Burgus, R. (1976). Endorphines, peptides d’origine hypothalamique et neurohypophysaire à activité morphinomimétique. Isolement et structure moléculaire de 1L-endorphine. C. R. Acad. Sci., Paris, 282, 783–785Google Scholar
  46. Hoffman, G. E., Moynihan, J. A. and Knigge, K. M. (1976). Immunocytochemical localization of luteinizing:hormone-releasing hormone (LH-RH). Differences with different antisera. Neurosci. Abstr., 2, 673Google Scholar
  47. Hökfelt, T., Efendid, S., Hellerström, C., Johansson, O., Luft, R. and Arimura, A. (1975a). Cellular localisation of somatostatin in endocrine-like cells and neurons of the rat with special references to the A, cells of the pancreatic islets and to the hypothalamus. Acta Endocrinol. ( Kbh. ), Suppl. 200, 5–41Google Scholar
  48. Hökfelt, T., Efendié, S., Johansson, O., Luft, R. and Arimura, A. (1974a). Immunohistochemical localization of somatostatin (growth hormone release-inhibiting factor) in the guinea-pig brain. Brain Res., 80, 165–169CrossRefGoogle Scholar
  49. Hokfelt, T., Elde, R., Fuxe, K., Johansson, O., Ljungdahl, A., Goldstein, M., Luft, R., Efendic, S., Nilsson, G., Terenius, L., Ganten, D., Jeffcoate, S. L., Rehfeld, J., Said, S., Perez de la Mora, M., Possani, L., Tapia, R., Teran, L. and Palacios, R. (1978a). Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus. In S. Reichlin, R. J. Baldessarini and J. B. Martin (eds.), The Hypothalamus, Raven Press, New York, 69–135Google Scholar
  50. Hökfelt, T., Elde, B., Johansson, O.,I’erenius, L. and Stein, L. (1977a). Distribution of enkephalin immunoreactive cell bodies in the rat central nervous system. Neurosci. Lett., 5, 25–33Google Scholar
  51. Hökfelt, T., Elfvin, L. G., Elde, R., Schultzberg, M., Goldstein, M. and Luft, R. (1977b). Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc. Natl. Acad. Sci., 74, 3587–3591CrossRefGoogle Scholar
  52. Hokfelt, T. and Fuxe, K. (1972). On the morphology and the neuroendocrine role of the hypothalamic catecholamine neurons. In K. M. Knigge, D. E. Scott and W. Weindl (eds.) Brain-Endocrine Interaction. Median Eminence: Structure and Function, Int. Symp., Munich, Karger, Basel, 181–223Google Scholar
  53. Hökfelt, T., Ftixe, K. and Goldstein, M. (1973). Immunohistochemical studies on monoamine-containing cell systems. Brain Res., 62, 461–469CrossRefGoogle Scholar
  54. Hökfelt T., Fuxe, K., Goldstein, M. and Johansson, O. (1974b). Immunohistochemical evidence for the existence of adrenaline neurones in the rat brain. Brain Res., 66, 235–251CrossRefGoogle Scholar
  55. Hökfelt, T., Fuxe, K., Goldstein, M., Johansson, O., Fraser, H. and Jeffcoate, S. (1975b). Immunofluorescence mapping of central monoamine and releasing hormone (LRH) systems. In W. E. Stumpf and L. D. Grant (eds.), Anatomical Neuroendocrinology, Karger, Basel, 381–392Google Scholar
  56. Hökfelt, T., Fuxe, K., Johansson, O., Jeffcoate, S. L. and White, N. (1975c). Distribution of thyrotropin-releasing hormone (TRH) in the central nervous system as revealed with immunohistochemistry. Europ. J. PharmacoL, 34, 389–392CrossRefGoogle Scholar
  57. Hökfelt, T., Johansson, O., Fuxe, K., Goldstein, M. and Park, D. (1976). Immunohistochemical studies on the localisation and distribution of monoamine neurone systems in the rat brain. Part I: Tyrosine hydroxylase in the mes- and diencephalon. Med. Biol., 54, 427–453Google Scholar
  58. Hökfelt, T., Johansson, O., Fuxe, K., Ltifstrtim, S., Goldstein, M., Park, D., Ebstein, R., Fraser, H., Jeffcoate, S., Efendic, S., Luft, R. and Arimura, A. (1975d). Mapping and relationship of hypothalamic neurotransmitters and hypothalamic hormones. In J. Tuomisto and M. K. Paasonen (eds.), CNS and Behavioural Pharamacology, Proc. Sixth Int. Congr. Pharmacol., Vol. 3, Forssan Kirjapaino, Oy, 93–110Google Scholar
  59. Hökfelt, T., Kellerth, J-O., Nilsson, G. and Pernow, B. (1975e). Substance P: localization in the central nervous system and in some primary sensory neurons. Science, 190, 889–890CrossRefGoogle Scholar
  60. Koslow, S. H. (1974). 5-Methoxytryptamine: a possible central nervous system transmitter. In Advances in Biochemical Psychopharmacology, Vol. II, Eds. E. Costa, G. L. Gessa and M. Sandler, New York, Raven Press, 95–100Google Scholar
  61. Krieg, R. J. and Sawyer, C. H. (1976). Effects of intraventricular catecholamines on luteinizing hormone release in ovariectomized-steroid-primed rats. Endocrinology, 99, 411–419CrossRefGoogle Scholar
  62. Krulich, L., Giachetti, A., Marchlenska-Koj, A., Hefco, E. and Jameson, H. E. (1977). On the role of the central noradrenergic and dopaminergic systems in the regulation to TSH secretion in the rat. Endocrinology, 100, 496–505CrossRefGoogle Scholar
  63. Larsson, L. -I., Fahrenkrug, J., Schaffalitzky de Muckadell, O., Sundler, F., Hakanson, R. and Rehfeld, J. F. (1976). Localisation of vasoactive intestinal polypeptide (VIP) to central and peripheral neurones. Proc. Nat. Acad. Sci. (Wash.), 73, 3197–3200.CrossRefGoogle Scholar
  64. Leibowitz, S. F. (1975). Pattern of drinking and feeding produced by hypothalamic norepinephrine injection in the satiated rat. Physiology and Behavior, 14, 731–742CrossRefGoogle Scholar
  65. Libertun, C. and McCann, S. M. (1974). Further evidence for cholinergic control of gonadotropin and prolactin secretion (38374). Proc. Soc. Exp. Biol. Med., 147, 498–504CrossRefGoogle Scholar
  66. Lichtensteiger, W. and Keller, P. J. (1974). Tubero-infundibular dopamine neurons and the secretion of luteinizing hormone and prolactin: extrahypothalamic influences, interaction with cholinergic systems and the effect of urethane anesthesia. Brain Res., 74, 279–303CrossRefGoogle Scholar
  67. Lichtensteiger, W., Lienhart, R. and Kopp, H. G. (1977). Peptide hormones and central dopamine neuron systems. Psychoneuroendocrinology, 2, 237–248CrossRefGoogle Scholar
  68. Lidbrink, P., Jonsson, G. and Fuxe, K. (1974). Selective reserpine resistant accumulation of catecholamines in central dopamine neurons after dopa administration. Brain Res., 67, 439–456CrossRefGoogle Scholar
  69. Lien, E. L., Fenichel, R. L., Garsky, V., Sarantakis, D. and Grant, N. H. (1976). Enkephalin-stimulated prolactin release. Life Sci., 19, 837–840CrossRefGoogle Scholar
  70. Ltifström, A. (1977). Catecholamine turnover alterations in discrete areas of the median eminence of the 4- and 5-day cyclic rat. Brain Res., 120, 113–131CrossRefGoogle Scholar
  71. Löfström, A., Eneroth, P., Gustafsson, J. -A. and Skett, P. (1977). Effects of estradiol ben-–zoate on catecholamine levels and turnover in discrete areas of the median eminence and the limbic forebrain, and on serum luteinizing hormone, follicle stimulating hormone and prolactin concentrations in the ovariectomized female rat. Endocrinology, 101, 1559–1569CrossRefGoogle Scholar
  72. Löfstrtim, A., Jonsson, G. and Fuxe, K. (1976a). Microfluorimetric quantitation of catecholamine fluorescence in rat median eminence. I: Aspects on the distribution of dopamine and noradrenaline nerve terminals. J. Histochem. Cytochem., 24, 415–429CrossRefGoogle Scholar
  73. Löfström, A., Jonsson, G., Wiesel, F. -A. and Fuxe, K. (1976b). Microfluorimetric quantitation of catecholamine fluorescence in rat median eminence. II: Turnover in hormonal states. J Histochem. Cytochem., 24, 430–442CrossRefGoogle Scholar
  74. Loh, H. H., Brase, D. A., Sampath-Khanna, S., Mar, J. B. and Way, E. L. (1976). p-Endorphine in vitro inhibition of striatal dopamine release. Nature, 264, 567–568Google Scholar
  75. Macleod, R. M. and Lehmeyer, J. E. (1974). Studies on the mechanism of the dopamine-mediated inhibition of prolactin secretion. Endocrinology, 94, 1077–1085CrossRefGoogle Scholar
  76. Martin, J. B., Durand, D. and Saunders, A. (1977). Evidence for a role of catecholamines and serotonin in regulation of episodic growth hormone secretion in the rat. In V. H. T. James (ed.), Endocrinology, Vol. I., Excerpta Medica, Amsterdam/Oxford, 148–151Google Scholar
  77. Mueller, G. P., Simpkins, J., Meites, J. and Moore, K. E. (1976). Differential effects of dopamine agonists and haloperidol on release of prolactin, thyroid-stimulating hormone, growth hormone and luteinizing hormone in rats. Neuroendocrinology, 20, 121–135CrossRefGoogle Scholar
  78. Muller, E. E., Da Prada, P. and Pecile, A. (1968). Influence of brain neurohumors injected into the lateral ventricle of the rat on the growth hormone release. Endocrinology, 83, 893896Google Scholar
  79. Myers, R. D. and Waller, M. B. (1975). Species continuity in the thermoregulatory responses of the pigtailed macaque to monoamines injected into the hypothalamus. Comp. Biochem. Physiol., 51A, 639–645CrossRefGoogle Scholar
  80. Reichlin, S., Saperstein, R., Jackson, I. M. D., Boyd, A. E. (III) and Patel, Y. (1976). Hypothalamic hormones. Ann. Rev. Physiol., 38, 389–424CrossRefGoogle Scholar
  81. Renaud, L. P., Martin, J. B. and Brazeau, P. (1975). Depressant action of TRH, LH-RH and somatostatin on activity of central neurones. Nature, 255, 233–235CrossRefGoogle Scholar
  82. Rivier, C., Vale, W., Ling, N., Brown, M. and Guillemin, R. (1977). Stimulation in vivo of the secretion of prolactin and growth hormone by 1-endorphin. Endocrinology, 100, 238–241CrossRefGoogle Scholar
  83. Roberts, E. (1975). Immunocytochemistry of the GABA system-a novel approach to an old transmitter. In J. A. Ferrendelli, B. S. McEwen and S. H. Snyder (eds.), Neuroscience Symposia, Vol. I. Neurotransmitters, Hormones and Receptors: Novel Approaches, Society for Neuroscience, Bethesda, Maryland, 123–138Google Scholar
  84. Roberts, E., Chase, T. N. and Tower, D. B. (eds.) (1975). GABA in Nervous System Function, Raven Press, New YorkGoogle Scholar
  85. Said, S. I. and Giachetti, A. (1977). Vasoactive intestinal polypeptides: distribution in normal tissues and preliminary report on its subcellular localization in brain. In S. Bonfils, P. Fromageot and G. Rosselin (eds.), First International Symposium on Hormonal Receptors in Digestive Tract Physiology, INSERM Symposium No. 3, North-Holland Publ., Amsterdam, 417–423Google Scholar
  86. Said, S. I. and Rosenberg, R. N. (1976). Vasoactive intestinal polypeptide: abundant immunoreactivity in neural cell lines and normal nervous tissue, Science, 192, 907–908CrossRefGoogle Scholar
  87. Sawyer, C. H. (1975). First Geoffrey Harris Memorial Lecture. Some recent developments in brain-pituitary-ovarian physiology. Neuroendocrinolbgy, 17, 97–124CrossRefGoogle Scholar
  88. Smelik, P. G. (1977). Neurotransmitter control of ACTH release. In V. H. T. James (ed.). Endocrinology, Vol. I, Excerpta Medica, Amsterdam/Oxford, 158–162Google Scholar
  89. Smith, M. O. and Holland, R. (1975). Effects of lesions of the nucleus accumbens on lactation and postpartum behavior. Physiol. Psychol., 3, 331–350CrossRefGoogle Scholar
  90. Snyder, S. H. and Taylor, K. M. (1972). Histamine in the brain: a neurotransmitter? In S. H. Snyder (ed.), Perspectives in Neuropharmacology-a Tribute to Julius Axelrod, Oxford University Press, New York, 43–73Google Scholar
  91. Tappaz, M. L., Brownstein, M. J. and Palkovits. M. (1976). Distribution of glutamate decarboxylase in discrete brain nuclei. Brain Res., 108, 371–379CrossRefGoogle Scholar
  92. Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand., Suppl. 367, 1–48CrossRefGoogle Scholar
  93. Vanderhaeghen, J. J., Signeau, J. C. and Gepts, W. (1975). New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature, 257, 604–605CrossRefGoogle Scholar
  94. Vogt, M. (1954). The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Loud.), 123, 451–481CrossRefGoogle Scholar
  95. Zimmerman, E. A. (1976). Localization of hypothalamic hormones by immunocytochemical techniques. In L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Raven Press, New York, 25–62Google Scholar

Copyright information

© B. Cox, I. D. Morris and A. H. Weston 1978

Authors and Affiliations

  • K. Fuxe
    • 1
  • T. Hökfelt
    • 1
  • K. Andersson
    • 1
  • L. Ferland
    • 1
  • O. Johansson
    • 1
  • D. Ganten
    • 2
  • P. Eneroth
    • 3
  • J.-A. Gustafsson
    • 4
  • P. Skett
    • 4
  • S. I. Said
    • 5
  • V. Mutt
    • 6
  1. 1.Department of HistologyKarolinska InstitutetStockholmSweden
  2. 2.Department of PharmacologyUniversity of HeidelbergHeidelbergWest Germany
  3. 3.Hormone Laboratory, Department of Obstetrics and GynecologyKarolinska HospitalStockholmSweden
  4. 4.Department of Medical ChemistryKarolinska InstitutetStockholmSweden
  5. 5.Departments of Internal Medicine and PharmacologyUniversity of Texas, Health Science CenterDallasUSA
  6. 6.Department of BiochemistryKarolinska InstitutetStockholmSweden

Personalised recommendations