Advertisement

Functional anatomy of the hypothalamus

  • B. Halász

Abstract

The hypothalamus, part of the diencephalon, is a rather small region of the brain. The human hypothalamus weighs about 4 grammes and thus represents only 0.3 per cent of the whole brain. In spite of its small size it plays a fundamental role in homeostasis as well as in reproduction. The structural organisation of this diencephalic region is most informative about the complex and manifold interrelated functions which have largely been discovered in this century, some significant contributions having been made in the last decades.

Keywords

Median Eminence Arcuate Nucleus Preoptic Area Luteinising Hormone Release Hormone Medial Forebrain Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, L.C., Brawer, J. R., Patel, Y. C. and Reichlin, S. (1976). Somatostatinergic neurones in anterior hypothalamus: immunohistochemical localisation. Endocrinology, 98, 255–258CrossRefGoogle Scholar
  2. Ambach, G. and Palkovits, M. (1974a). Blood supply of the rat hypothalamus. I: Nucleus supraopticus. Acta morph. Acad. Sci. Hung., 22, 291–310Google Scholar
  3. Ambach, G. and Palkovits, M. (1974b). Blood supply of the rat hypothalamus. II: Nucleus paraventricularis. Acta morph. Acad. Sci. Hung., 22, 311–320Google Scholar
  4. Ambach, G. and Palkovits, M. (1975). Blood supply of the rat hypothalamus. III: Anterior region of the hypothalamus. Acta morph. Acad. Sci. Hung., 23, 21–49Google Scholar
  5. Bargmann, W. (1954). Das Zwischenhirn-Hypophysensystem, Springer, BerlinCrossRefGoogle Scholar
  6. Barry, J. (1977). Immunofluorescence study of LRF neurones in man. Cell Tiss.Res., 181, 1–14CrossRefGoogle Scholar
  7. Barry, J. and Carette, B. (1975). Immunofluorescence study of LRF neurones in primates. Cell Tiss. Res., 164, 163–178CrossRefGoogle Scholar
  8. Barry, J. and Dubois, M. P. (1975). Immunofluorescence study of LRF-producing neurones in the cat and the dog. Neuroendocrinology, 18, 290–298CrossRefGoogle Scholar
  9. Blackwell, R. E. and Guillemin, R. (1973). Hypothalamic control of adenohypophyseal secretions. Ann. Rev. Physiol., 35, 357–390CrossRefGoogle Scholar
  10. Bobiller, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M. and Jouvet, M. (1976). The raphe nuclei of the cat brainstem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res., 113, 449–486CrossRefGoogle Scholar
  11. Bodoky, M. and Réthelyi, M. (1977). Dendritic arborization and axon.trajectory of neurones in the hypothalamic arcuate nucleus of the rat. Exp. Brain Res., 28, 543–555CrossRefGoogle Scholar
  12. Butler, W. R., Krey,L. C., Espinosa-Campos, J. and Knobil, E. (1975a). Surgical disconnection of the medial basal hypothalamus and pituitary function in the rhesus monkey. III: Thyroxine secretion. Endocrinology, 96, 1094–1098Google Scholar
  13. Butler, W. R., Krey, L. C., Lu, K. H., Peckham, W. D. and Knobil, E. (1975b). Surgical disconnection of the medial basal hypothalamus and pituitary function in the rhesus monkey. IV: Prolactin secretion. Endocrinology, 96, 1099–1105CrossRefGoogle Scholar
  14. Choy, V. J. and Watkins, W. B. (1977). Immunocytochemical study of the hypothalamoneurohypophyseal system. Cell Tiss. Res., 180, 467–490CrossRefGoogle Scholar
  15. Conrad, L. C. A. and Pfaff, D. W. (1976a). Efferents from medial basal forebrain and hypothalamus in the rat. I: An autoradiographic study of the medial preoptic area. J. comp. Neurol., 169, 185–220CrossRefGoogle Scholar
  16. Conrad, L. C. A. and Pfaff, D. W. (1976b). Efferents from medial basal forebrain and hypothalamus in the rat. II: An autoradiographic study of the anterior hypothalamus. J. comp. Neurol., 169, 221–262CrossRefGoogle Scholar
  17. Conrad, L. C. A. and Pfaff, D. W. (1976c). Autoradiographic tracing of nucleus accumbens efferents in the rat. Brain Res., 113, 589–596CrossRefGoogle Scholar
  18. Cross, B. A. (1964). The hypothalamus in mammalian homeostasis. Symp. Soc. exp. Biol., 18, 157–193Google Scholar
  19. Diepen, R. (1962). Der Hypothalamus. In von Möllendorff’s Hdb.d. Mikr. Anat. d. Menschen Nervensystem, Springer, Berlin, IV, 7Google Scholar
  20. Dierickx, K., Vandesande, F. and de Mey, J. (1976). Indentification in the external region of the rat median eminence of separate neurophysin-vasopressin and neurophysin-oxytocin containing nerve fibres. Cell Tiss. Res., 168, 141–151CrossRefGoogle Scholar
  21. Dreifuss, J. J., Akert, K., Sandri, C. and Moor, H. (1976). Specific arrangements of membrane particles at sites of exo- and endocytosis in the freeze-etched neurohypophysis. Cell Tiss. Res., 165, 317–325CrossRefGoogle Scholar
  22. Dubé, D., Leclerc, R., Pelletier, G., Arimura, A. and Schally, A. V. (1975). Imrhunohistochemical detection of growth hormone-release inhibiting hormone (somatostatin) in the guinea-pig brain. Cell Tiss. Res., 161., 385–392Google Scholar
  23. Dyer, R. G. (1973). An electrophysiological dissection of the hypothalamic regions which regulate the pre-ovulatory secretion of luteinising hormone in the rat. J. Physiol. (Loud)., 234, 421–442CrossRefGoogle Scholar
  24. Dyer, R. G. and Cross, B. A. (1972). Antidromic identification of units in the preoptic and anterior hypothalamic areas projecting directly to the ventromedial and arcuate nuclei. Brain Res., 43, 254–258CrossRefGoogle Scholar
  25. Edwards, S. B. and de Olmos, J. S. (1976). Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J. comp. Neurol., 165, 417–432CrossRefGoogle Scholar
  26. Elde, R. P. and Parsons, J. A. (1975). Immunocytochemical localization of somatostatin in cell bodies of the rat hypothalamus. Amer. J. Anat., 144, 541–548CrossRefGoogle Scholar
  27. Engeland, W. C. and Dallman, M. F. (1975). Compensatory adrenal growth is neurally mediated. Neuroendocrinology, 19, 352–362CrossRefGoogle Scholar
  28. Engeland, W. C. and Dallman, M. F. (1976). Neural mediation of compensatory adrenal growth. Endocrinology, 99, 1659–1662CrossRefGoogle Scholar
  29. Eränkö, O. (1955). The histochemical demonstration of noradrenaline in the adrenal medulla of rats and mice. J. Histochem. Cytochem., 4, 11CrossRefGoogle Scholar
  30. Falck, B., Hillarp, N. A., Thieme, G. and Torp, A. (1962). Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem., 10, 348–354CrossRefGoogle Scholar
  31. Field, P. M. (1972). A quantitative ultrastructural analysis of the distribution of amygdaloid fibres in the preoptic area and the ventromedial hypothalamic nucleus. Exp. Brain Res., 14, 527–538CrossRefGoogle Scholar
  32. Gerendai, I. and Haldsz, B. (1976). Hemigonadectomy-induced unilateral changes in the protein-synthesizing activity of the rat hypothalamic arcuate nucleus. Neuroendocrinology 21, 331–337CrossRefGoogle Scholar
  33. Gerendai, I., Kiss, J., Molndr, J. and Haldsz, B. (1974). Further data on the existence of a neural pathway from the adrenal gland to the hypothalamus. Cell Tiss. Res., 153, 559–564CrossRefGoogle Scholar
  34. Gerendai, I., Marchetti, B. and Scapagnini, U. (1977). Chronic degeneration of norepinephrinergic (NE) ovarian endings and compensatory ovarian hypertrophy (OCH). Proc. Int. Union Physiol. Sci., Vol. XIII, Actes du Congres, P. 262Google Scholar
  35. Goldsmith, P. C. and Ganong, W. F. (1975). Ultrastructural localization of luteinizing hormone-releasing hormone in the median eminence of the rat. Brain Res., 97, 181–193CrossRefGoogle Scholar
  36. Haldsz, B. (1969). The endocrine effects of isolation of the hypothalamus from the rest of the brain. In W. F. Ganong and L. Martini (eds.), Frontiers in Neuroendocrinology, Oxford University Press, New York, 307–342Google Scholar
  37. Haldsz, B. and Szentdgothai, J. (1959). Histologischer Beweis einer nervösen Signaltibermittlung von der Nebennierenrinde zum Hypothalamus. Z. Zellforsch., 50, 297–306CrossRefGoogle Scholar
  38. Harris, M. C., Makara, G. B. and Spyer, K. M. (1971). Electrophysiological identification of neurones of the tubero-infundibular system. J. Physiol. (Lond.)., 218, 86–87Google Scholar
  39. Harris, M. C. and Sanghera, M. (1974). Projection of medial basal hypothalamic neurones to the preoptic anterior hypothalamic areas and the paraventricular nucleus in the rat. Brain Res., 81, 401–411CrossRefGoogle Scholar
  40. Haymaker, W., Anderson, E. and Nauta, W. J. H. (1969). The Hypothalamus, Charles C. Thomas, Springfield, Illinois, USAGoogle Scholar
  41. Heimer, L. (1975). Olfactory projections to the diencephalon. In W. E. Stumpf and L. D. Grant (eds.), Anatomical Neuroendocrinology, Karger, Basel, 30–39Google Scholar
  42. Heimer, L. and Nauta, W. J. H. (1969). The hypothalamic distribution of the stria terminalis in the rat. Brain Res., 13, 284–297CrossRefGoogle Scholar
  43. Hendrickson, A. E., Wagoner, N. and Cowan, W. M. (1972). An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z. Zellforsch., 135, 1–126CrossRefGoogle Scholar
  44. Hökfelt, T., Efendic, S., Hellerström, C., Johansson, O., Luft, R. and Arimura, A. (1975b). Cellular localization of somatostatin in endocrine-like cells and neurones of the rat with special references to the Al-cells of the pancreatic islets and to the hypothalamus. Acta Endocrinol., Suppl. 200, 80, 1–41Google Scholar
  45. Hökfelt, T., Efendic, S., Johansson, O., Luft, R. and Arimura, A. (1974). Immunohistochemical localization of somatostatin (growth hormone release-inhibiting factor) in the guinea-pig brain. Brain Res., 80, 165–169CrossRefGoogle Scholar
  46. Hökfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G. and Arimura, A. (1976). Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurones in the rat. Neuroscience 1, 131–136CrossRefGoogle Scholar
  47. Hökfelt, T., Fuxe, K., Johansson, O., Jeffcoate, S. and White, N. (1975a). Distribution of thyrotrophin-releasing hormone (TRH) in the central nervous system as revealed with immunohistochemistry. Europ. J. Pharmacol., 34, 389–392CrossRefGoogle Scholar
  48. Hyyppä, M., Motta, M. and Martini, L. (1971). “Ultrashort” feed-back control of folliclestimulating hormone-releasing factor secretion. Neuroendocrinology, 7, 227CrossRefGoogle Scholar
  49. Keefer, D. A. and Stumpf, W. E. (1975). Atlas of oestrogen-concentrating cells in the central nervous system of the squirrel monkey. J. comp. Neurol., 160, 419–442CrossRefGoogle Scholar
  50. King, J. C., Gerall, A. A., Fishback, J. B. and Elkind, K. E. (1975). Growth hormone-release inhibiting hormone (GH-RIH) pathway of the rat hypothalamus revealed by the unlabelled antibody peroxidase-antiperoxidase method. Cell Tiss. Res., 160, 423–430CrossRefGoogle Scholar
  51. Koritsdnszky, S. and Köves, K. (1976). Data on the absence of axon terminals of medial preoptic area neurones in the surface zone of the median eminence. J. Neural Transm., 38, 159–167CrossRefGoogle Scholar
  52. Köves, K. and Réthelyi, M. (1976). Direct neural connection from the medial preoptic area to the hypothalamic arcuate nucleus of the rat. Exp. Brain Res., 25, 529–539CrossRefGoogle Scholar
  53. Krey, L. C., Butler, W. R. and Knobil, E. (1975a). Surgical disconnection of the medial basal hypothalamus and pituitary function in the rhesus monkey. I: Gonadotrophin secretion. Endocrinology, 96, 1073–1087CrossRefGoogle Scholar
  54. Krey, L. C., Lu, K. H., Butler, W. R. and Hotchkiss, J. (1975b). Surgical disconnection of the medial basal hypothalamus and pituitary function in the rhesus monkey. II: GH and cortisol secretion. Endocrinology, 96, 1088–1093CrossRefGoogle Scholar
  55. Lammers, H. J. (1972). The neural connections of the amygdaloid complex in mammals. In B. E. Eleftheriou (ed.). Advances in Behavioral Biology, vol. 2., Plenum Press, New York, 123–144Google Scholar
  56. Leonardelli, J., Barry, J. and Dubois, M. P. (1973). Mise en evidence par immunofluorescence d’un constituant immunologiquement apparenté au LH-RF dans l’hypothalamus et l’éminence médiane chez les mammifères. C. R. Acad. Sci. Paris, 276. 2043–2046Google Scholar
  57. Lértnth, Cs., Zdborszky, L., Marton, J. and Palkovits, M. (1975). Quantitative studies on the supraoptic nucleus in the rat. I: Synaptic organization. Exp. Brain Res., 22, 509–523Google Scholar
  58. Lisk, R. D. (1962). Diencephalic placement of oestradiol and sexual receptivity in the female rat. Ant J. Physiol., 203, 493–496Google Scholar
  59. McBride, R. L. and Sutin, J. (1976). Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. J. comp. Neurol., 165, 265–284CrossRefGoogle Scholar
  60. McGuire, J. L. and Lisk, R. D. (1969). Localization of oestrogen receptors in the rat hypothalamus. Neuroendocrinology, 4, 289–295CrossRefGoogle Scholar
  61. Makara, G. B., Harris, M. C. and Spyer, K. M. (1972). Identification and distribution of tubero-infundibular neurones. Brain Res., 40, 283–290CrossRefGoogle Scholar
  62. Makara, G. B. and Hodacs, L. (1975). Rostral projections from the hypothalamic arcuate nucleus. Brain Res., 84, 23–29CrossRefGoogle Scholar
  63. Mason, C. A. and Lincoln, D. W. (1976). Visualization of the retino-hypothalamic projection in the rat by cobalt precipitation. Cell Tiss. Res., 168, 117–131CrossRefGoogle Scholar
  64. Matsumoto, A. and Arai, Y. (1976). Effect of oestrogen on early postnatal development of synaptic formation in the hypothalamic arcuate nucleus of female rats. Neurosci. Lett., 2, 79–82CrossRefGoogle Scholar
  65. Meibach, R. C. and Siegel, A. (1977). Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods. Brain Res., 119, 1–20CrossRefGoogle Scholar
  66. Mess, B. (1969). Site and onset of production of releasing factors. In Progress in Endocrinology, Internat. Congr. Ser. 184, Excerpta Medica, Amsterdam, 564Google Scholar
  67. Moore, R. Y. and Lenn, N. J. (1972). A retinohypothalamic projection in the rat. J. comp. Neurol., 146, 1–14CrossRefGoogle Scholar
  68. Moss, R. L. (1975). Unit responses in preoptic and arcuate neurones related to anterior pituitary function. In L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Raven Press, New York, 95–128Google Scholar
  69. Nauta, W. J. H. (1960). Limbic system and hypothalamus: anatomical aspects. Physiol. Rev., 40, 102–104Google Scholar
  70. Nauta, W. J. H. and Haymaker, W. (1969). Hypothalamic nuclei and fiber connections. In W. Haymaker, E. Anderson and W. J. H. Nauta (eds.), The Hypothalamus, Charles C. Thomas, Springfield, Illinois, USA, 136–209Google Scholar
  71. Pasquier, D. A. and Reinoso-Suarez, F. (1976). Direct projections from hypothalamus to hippocampus in the rat demonstrated by retrograde transport of horseradish peroxidase. Brain Res., 108, 165–169CrossRefGoogle Scholar
  72. Pelletier, G., Labrie, F., Puviani, R., Arimura, A. and Schally, A. V. (1974). Immunohistochemical localization of luteinizing hormone-releasing hormone in the rat median eminence. Endocrinology, 95, 314–317CrossRefGoogle Scholar
  73. Pfaff, D. W., Gerlach, J. L., McEwen, B. S., Ferin, M., Carmel, P. and Zimmerman, E. A. (1976). Autoradiographic localization of hormone-concentrating cells in the brain of the female rhesus monkey. J. comp. Neurol., 170, 279–294CrossRefGoogle Scholar
  74. Pfaff, D. and Keiner, M. (1973). Atlas of oestradiol-concentrating cells in the central nervous system of the female rat. J. comp. Neurol., 151, 121–157CrossRefGoogle Scholar
  75. Poulain, P. and Partouche, C. (1967). Neural connections from the preoptic region and septum to the arcuate nucleus and median eminence. C. R. Acad. Sci. (Paris), 277, 737–739Google Scholar
  76. Raisman, G. (1966). The connexions of the septum. Brain, 89, 317–348CrossRefGoogle Scholar
  77. Raisman, G., Cowan, W. M. and Powell, T. P. S. (1965). The extrinsic afferent, commissural and association fibres of the hippocampus. Brain, 88, 963–996CrossRefGoogle Scholar
  78. Raisman, G., Cowan, W. M. and Powell, T. P. S. (1966). An experimental analysis of the efferent projection of the hippocampus. Brain, 89, 83–108CrossRefGoogle Scholar
  79. Raisman, G. and Field, P. M. (1971). Anatomical considerations relevant to the interpretation of neuroendocrine experiments. In L. Martini and W. F. Ganong (eds.), Frontiers in Neuroendocrinology, Oxford University Press, New York, 3–44Google Scholar
  80. Raisman, G. and Field, P. M. (1973). Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res., 54, 1–29CrossRefGoogle Scholar
  81. Renaud, L. P. (1976a). Tubero-infundibular neurones in the basomedial hypothalamus of the rat: electrophysiological evidence for axon collaterals to hypothalamic and extrahypothalamic areas. Brain Res., 105, 59–72CrossRefGoogle Scholar
  82. Renaud, L. P. (1976b). An electrophysiological study of amygdalohypothalamic projections to the ventromedial nucleus of the rat. Brain Res., 105, 45–58CrossRefGoogle Scholar
  83. Renaud, L. P. and Hopkins, D. A. (1977). Amygdala afferents from the mediobasal hypothalamus: an electrophysiological and neuroanatomical study in the rat. Brain Res., 121, 201–213CrossRefGoogle Scholar
  84. Réthelyi, M. and Haldsz, B. (1970). Origin of the nerve endings in the surface zone of the median eminence of the rat hypothalamus, Exp. Brain Res., 11, 145–158Google Scholar
  85. Saper, C. B., Loewy, A. D., Swanson, L. W. and Cowan, W. M. (1976b). Direct hypothalamoautonomic connections. Brain Res., 117, 305–312CrossRefGoogle Scholar
  86. Saper, C. B., Swanson, L. W. and Cowan, W. M. (1976a). The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J. comp. Neurol., 169, 409–442CrossRefGoogle Scholar
  87. Sar, M. and Stumpf, W. E. (1975). Distribution of androgen-concentrating neurones in rat brain. In W. E. Stumpf and L. D. Grant, Anatomical Neuroendocrinology, Karger, Basel, 120–133Google Scholar
  88. Scharrer, E. and Scharrer, B. (1954). Die Neurosekretion. In Hdb. d. Mikrosk. Anat. d. Menschen, W. V. Möllendorff and W. Bargmann (eds.), Springer, Berlin-GöttingenHeidelberg, VI, 5Google Scholar
  89. Sétdld, G. (1977). Anatomy, using new immunohistological methods. In V. H. T. James (ed.), Endocrinology, Excerpta Medica, Amsterdam-Oxford, 100–104Google Scholar
  90. Sétdld, G., Vigh, S., Schally, A. V., Arimura, A. and Flerkd, B. (1975). GH-RIH containing neural elements in the rat hypothalamus. Brain Res., 90, 352–356CrossRefGoogle Scholar
  91. Sétdld, G., Vigh, S., Schally, A. V., Arimura, A. and Flerkd, B. (1976). Immunohistological study of the origin of LH-RH containing nerve fibres of the rat hypothalamus. Brain Res., 103, 597–602CrossRefGoogle Scholar
  92. Siverman, A. J. and Desmoyers, P. (1976). Ultrastructural immunocytochemical localization of luteinizing hormone-releasing hormone (LH-RH) in the median eminence of the guinea-pig. Cell Tiss. Res., 169, 157–166Google Scholar
  93. Sousa-Pinto, A. (1970). Electron microscopic observations on the possible retinohypothalamic projection in the rat. Exp. Brain Res., 11, 528–538Google Scholar
  94. Szentdgothai, J. (1964). The parvicellular neurosecretory system. In W. Bargmann and J. P. Schadd (eds.), Progress in Brain Research, Elsevier Publishing Company, Amsterdam, 135–146Google Scholar
  95. Szentdgothai, J. (1968). Anatomical considerations. In J. Szent3gothai, B. Flerk6, B. Mess and B. Haldsz (eds.), Hypothalamic Control of the Anterior Pituitary, Akadémiai Kiadd, Budapest, 22–109Google Scholar
  96. Szentdgothai, J., Flerkó, B., Mess, B. and Haldsz, B. (1968). Hypothalamic control of the anterior pituitary. An experimental-morphological study. Akaddmiai Kiad6, BudapestGoogle Scholar
  97. Vandesande, F. and Dierickx, K. (1975). Identification of the vasopressin-producing and of the oxytocin-producing neurones in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tiss. Res., 164, 153–162CrossRefGoogle Scholar
  98. Vandesande, F., Dierickx, K. and de Mey, J. (1975a). Identification of the vasopressin-neurophysin II and the oxytocin-neurophysin I-producing neurones in the bovine hypothalamus. Cell Tiss. Res., 156, 189–200CrossRefGoogle Scholar
  99. Vandesande, F., Dierickx, K. and de Mey, J. (1975b). Identification of the vasopressinneurophysin-producing neurones of the rat suprachiasmatic nuclei. Cell Tiss. Res., 156, 377–380CrossRefGoogle Scholar
  100. Wakefield, C. and Hall, E. (1974). Hypothalamic projections to the amygdala in the cat. A light and electron microscopic study. Cell Tiss.. Res., 151, 499–508Google Scholar
  101. Watkins, W. B. and Choy, V. J. (1977). Immunocytochemical study of the hypothalamoneurohypophyseal system. III: Localization of oxytocin- and vasopressin-containing neurones in the pig hypothalamus. Cell Tiss. Res., 180, 491–503CrossRefGoogle Scholar
  102. Wenisch, J. J. C. (1976). Retinohypothalamic projection in the mouse: electron microscopic and iontophoretic investigations of hypothalamic and optic centres. Cell Tiss. Res., 167, 547–561CrossRefGoogle Scholar
  103. Yagi, K. and Sawaki, Y. (1970). On the localization of neurosecretory cells controlling adenohypophyseal function. J. Physiol. Soc. Jap., 32, 621–622Google Scholar
  104. Yagi, K. and Sawaki, Y. (1975). Recurrent inhibition and facilitation: demonstration in the tubero-infundibular system and effects of strychnine and picrotoxin. Brain Res., 84, 155–159CrossRefGoogle Scholar

Copyright information

© B. Cox, I. D. Morris and A. H. Weston 1978

Authors and Affiliations

  • B. Halász
    • 1
  1. 1.Second Department of Anatomy, Histology and EmbryologySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations