Skip to main content

Probability theory applied to reservoir storage

  • Chapter
Stochastic Water Resources Technology
  • 499 Accesses

Abstract

Stochastic models applicable to hydrologic time series and extreme events are investigated in earlier chapters. Such models are important for the simulation of complex water resource systems and for flood estimation purposes. However, in the design of individual reservoirs where one of the main criteria is the probability of failure, a more direct approach can be adopted if the inflow data are independent or have a Markov type of dependence. The choice between alternatives is usually made so that this probability does not exceed a stipulated value, which depends on the purposes served. Also important is the average number of times a reservoir will spill or empty during a given period. Another interesting outcome is the probability of first time emptiness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benjamin, J. R., and Cornell, C. A. (1970). Probability, Statistics and Decision for Civil Engineers, McGraw-Hill, New York

    Google Scholar 

  • Billingsley, P. (1961). Statistical Inference for Markov Processes, University of Chicago Press, Chicago, Illinois

    Google Scholar 

  • Brooks, C. E. P., and Carruthers, N. C. (1953). Handbook of Statistical Methods in Meteorology, H. M. Stationary Office, London, pp. 281–339

    Google Scholar 

  • Chin, E. H. (1977). Modelling daily precipitation occurrence process with Markov chain. Water Resour. Res., 13, 949–56

    Article  Google Scholar 

  • Chung, K. L. (1967). Markov Chains with Stationary Transition Probabilities, 2nd edn, Springer, Berlin

    Google Scholar 

  • Cole, J. A. (1966). Application of two season statistics to reservoir yield calculations. Proceedings of the International Association of Scientific Hydrology Symposium, Garda, Italy, pp. 590–1

    Google Scholar 

  • Cox, D. R., and Miller, H. D. (1965). The Theory of Stochastic Processes, Methuen, London

    Google Scholar 

  • Cox, D. R., and Smith, W. L. (1961). Queues, Monographs on Applied Probability and Statistics, Methuen, London

    Google Scholar 

  • Crovelli, R. A. (1973). Stochastic models for precipitation. Proceedings of the International Symposium on Uncertainties in Hydrologic and Water Resource Systems, vol. 1, 11–14 December 1972, University of Arizona, Tucson, pp. 284–98

    Google Scholar 

  • David, F. N., and Barton, D. E. (1962). Combinatorial Chance, Griffin, London

    Google Scholar 

  • Doran, D. G. (1975). An efficient transition definition for discrete state reservoir analysis: the divided interval technique. Water Resour. Res., 11, 867–73

    Article  Google Scholar 

  • Dyck, S., and Schramm, M. (1966). Queuing theory and multipurpose reservoir design. Proceedings of the International Association of Scientific Hydrology Symposium, Garda, Italy, paper 2 (71), pp. 707–10

    Google Scholar 

  • Encyclopaedia Britannica (1977), vol. 14, 15th edn, William Benton, Chicago, Illinois, pp. 1113–15

    Google Scholar 

  • Farmer, E. E., and Homeyer, J. W. (1974). The probability of consecutive rainless days. Water Resour. Bull., 10, 914–24

    Article  Google Scholar 

  • Feller, W. (1968). Introduction to Probability Theory and its Applications, vol. 1, 3rd edn, Wiley, New York

    Google Scholar 

  • Fiering, M. B. (1962). Queuing theory and simulation in reservoir design. Trans. Am. Soc. Civ. Eng., 127, part I, paper 3367, 1114–44

    Google Scholar 

  • Gabriel, K. R., and Neumann, J. (1962). A Markov chain model for daily rainfall occurrence at Tel Aviv. Q. J. R. Meteorol. Soc., 88, 90–5

    Article  Google Scholar 

  • Gani, J. (1957). Problems in the probability theory of storage systems. J. R. Statist. Soc. B, 19, 181–206

    Google Scholar 

  • Gani, J. (1965). Flooding models. Proceedings of the Reservoir Yield Symposium,21–23 September 1965, Water Research Association, Medmenham, paper 4, pp. 4–1–4–16

    Google Scholar 

  • Gillett, B. E. (1976). Introduction to Operations Research, A Computer Oriented Algorithmic Approach, McGraw-Hill, New York

    Google Scholar 

  • Gnedenko, B. V. (1968). The Theory of Probability, 4th edn (translated from Russian by B. D. Seckler), Chelsea, New York

    Google Scholar 

  • Gould, B. W. (1961). Statistical methods for estimating the design capacity of dams. J. Inst. Eng. Aust., 33, 405–16

    Google Scholar 

  • Gould, B. W. (1966). Communication on `Probability of reservoir yield failure using Moran’s steady state method and Gould’s probability writing method’ by R. A. Harris. J. Inst. Water Eng., 20, 141–6

    Google Scholar 

  • Green, J. R. (1964). A model for rainfall occurrence. J. R. Statist. Soc. B., 26, 345–53

    Google Scholar 

  • Green, J. R. (1970). A generalized probability model for sequences of wet and dry days. Mon. Weath. Rev., 98, 238–41

    Article  Google Scholar 

  • Gross, D., and Harris, C. M. (1974). Fundamentals of Queuing Theory, Wiley, New York

    Google Scholar 

  • Harris, R. A. (1965). A probability of reservoir yield failure using Moran’s steady state probability method and Gould’s probability routing method. J. Inst. Water Eng., 19, 302–28

    Google Scholar 

  • Harris, R. A., Dearlove, R. E., and Morgan, M. (1965). Reservoir yield, 2, serially correlated inflows and subsequent attainment of steady state probabilities, Water Res. Assoc., Medmenham, Tech. Paper, No. 45

    Google Scholar 

  • Hershfield. D. M. (1971). Parameter estimation for wet-dry sequences. Water Resour. Bull., 7, 441–6

    Article  Google Scholar 

  • Hillier, F. S., and Lieberman, G. J. (1974). Operations Research, 2nd edn, Holden Day, San Francisco, California

    Google Scholar 

  • Isaacson, D. L., and Madsen, R. W. (1976). Markov Chains—Theory and Applications, Wiley, New York

    Google Scholar 

  • Jarvis, C. L. (1964). An Application of Moran’s theory of dams to the Ord River project, western Australia. J. Hydrol., 2, 232–47

    Article  Google Scholar 

  • Joy, C. S., and McMahon, T. A. (1972). Reservoir-yield estimation procedures. Civ. Eng. Trans., Inst. Eng. Aust., 14, 28–36

    Google Scholar 

  • Kemeny, J. G., and Snell, J. L. (1960). Finite Markov Chains, Van Nostrand, Princeton, New Jersey

    Google Scholar 

  • Kendall, D. G. (1957). Some problems in the theory of dams. J. R. Statist. Soc. B., 19, 207–33

    Google Scholar 

  • KiemeÅ¡, V. (1970). A two-step probabilistic model of storage reservoir with correlated inputs. Water Resour. Res., 6, 756–67

    Article  Google Scholar 

  • KiemeÅ¡, V. (1971). On one difference between the Gould and Moran storage models. Water Resour. Res., 7, 410–4

    Article  Google Scholar 

  • KiemeÅ¡, V. (1974). Probability distribution of outflow from a linear reservoir. J. Hydrol., 21, 305–14

    Article  Google Scholar 

  • KiemeÅ¡, V. (1977). Discrete representation of storage for stochastic reservoir optimization. Water Resour. Res., 13, 149–58

    Article  Google Scholar 

  • Langbein, W. B. (1958). Queuing Theory and Water Storage. J. Hydraul. Div., Am. Soc. Civ. Eng., 84 (HY5), 1811–1–1811–24

    Google Scholar 

  • Lloyd, E. H. (1963). A probability theory of reservoirs with serially correlated inputs, J. Hydrol., 1, 99–128

    Article  Google Scholar 

  • Lloyd, E. H. (1967). Stochastic reservoir theory. Adv. Hydrosci., 4, 281–339

    Article  Google Scholar 

  • Lloyd, E. H. (1974). What is, and what is not, a Markov chain. J. Hydrol., 22, 1–28

    Article  Google Scholar 

  • Lloyd, E. H., and Odoom, S. (1964). Probability theory of reservoirs with seasdnal input. J. Hydrol., 2, 1–10

    Article  Google Scholar 

  • Lowry, W. P., and Guthrie, D. (1968). Markov chains of order greater than one. Mon. Weath. Rev., 96, 798–801

    Article  Google Scholar 

  • Moran, P. A. P. (1954). A probability theory of dams and storage systems. Aust. J. Appl. Sci., 5, 116–24

    Google Scholar 

  • Moran, P. A. P. (1955). A probability theory of dams and storage systems, modifications of the release rule. Aust. J. Appl. Sci., 6, 117–30

    Google Scholar 

  • Moran, P. A. P. (1959). The Theory of Storage, Methuen, London

    Google Scholar 

  • Mosteller, F. (1965). Fifty Challenging Problems in Probability, Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • National Bureau of Standards (1959). Tables of the bivariate normal distribution function and related functions. U.S. Dep. Comm., Washington, D.C., Appl. Math. Ser., No. 50

    Google Scholar 

  • Parzen, E. (1962). Stochastic Processes, Holden Day, San Francisco, California

    Google Scholar 

  • Pegram, G. G. S. (1974). Factors affecting draft from a Lloyd reservoir. Water Resour. Res., 10, 63–6

    Article  Google Scholar 

  • Phatarfod, R. M. (1976). Some aspects of stochastic reservoir theory. J. Hydrol., 30, 199–217

    Article  Google Scholar 

  • Prabhu, N. U. (1958). Some exact results for the finite dam. Ann. Math. Statist., 29, 1234–43

    Article  Google Scholar 

  • Prabhu, N. U. (1964). Time dependent results in storage theory. J. Appl. Prob.,1, 1–64

    Google Scholar 

  • Reardon, T. J. (1970). Storage yield and probability from an engineer’s viewpoint (with discussion). Civ. Eng. Trans., Inst. Eng. Aust., 12, 119–24, 168, 169

    Google Scholar 

  • Revuz, D. (1975). Markov Chains, North-Holland, Amsterdam

    Google Scholar 

  • Ross, S. M. (1972). Introduction to Probability Models, Academic Press, New York

    Google Scholar 

  • Saverenskiy, A. D. (1940). Metod rascheta regulirovaniya stoka. Gidrotekhnicheskoe Stroitel’stvo, No. 2, 24–8

    Google Scholar 

  • Shamblin, J. E., and Stevens, G. T., Jr. (1974). Operations Research, a Fundamental Approach, McGraw-Hill, New York

    Google Scholar 

  • Strang, G. (1976). Linear Algebra and its Applications, Academic Press, New York

    Google Scholar 

  • Venetis, C. (1969a). Conditional probabilities of failures in reservoir operation for the Moran–Gould model. Water Resour. Res., 5, 514–18.

    Article  Google Scholar 

  • Venetis, C.(1970). Comments. Water Resour. Res., 6, 1427–32

    Google Scholar 

  • Venetis, C. (1969b). On the distribution of the frequency of reservoir deficit, J. Hydrol., 8, 341–6.

    Article  Google Scholar 

  • Venetis, C. (1970). Correction. J. Hydrol., 10, 103–4. Discussion. J. Hydrol.,10, 199–201

    Article  Google Scholar 

  • Venetis, C. (1969c). A stochastic model of monthly reservoir storage. Water Resour. Res., 5, 729–34.

    Article  Google Scholar 

  • Venetis, C. (1970). Correction. Water Resour. Res. 6, 351

    Article  Google Scholar 

  • Weesakul, B. (1961). First emptiness of a finite dam. J. R. Statist. Soc. B, 23, 343–51

    Google Scholar 

  • Weiss, L. L. (1964). Sequences of wet or dry days described by a Markov chain probability model. Mon. Weath. Rev., 92, 169–76

    Article  Google Scholar 

  • White, J. B. (1965). Probability of emptiness, II, a variable–season model. Proceedings of the Reservoir Yield Symposium, 21–23 September 1965 Water Research Association, Medmenham, paper 6, pp. 6–1–6–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1980 N. T. Kottegoda

About this chapter

Cite this chapter

Kottegoda, N.T. (1980). Probability theory applied to reservoir storage. In: Stochastic Water Resources Technology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03467-3_7

Download citation

Publish with us

Policies and ethics