Special properties and models

  • N. T. Kottegoda


This chapter concerns properties of special significance in hydrology. In the general class of crossing properties, theoretical aspects of runs, run lengths and sums are explained, and their practical relevance is discussed. Reservoir storage analysis which follows includes the Rippl diagram and the concepts of deficit and range. In this context the Hurst phenomenon, which has been an important subject of research and some controversy within the hydrological world and outside, is described, and the associated theoretical treatment of the rescaled range is taken up. Fractional gaussian processes which maintain the Hurst effect over very long time spans are explained. The final sections pertain to models that generate fractional noise and the broken-line model which is outlined. To aid the practitioner, some computer subroutines are provided.


Fractional Brownian Motion Withdrawal Rate Annual Flow Fractional Noise Adjusted Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anis, A. A., and Lloyd, E. H. (1953). On the range of partial sums of a finite number of independent normal variates. Biometrika, 40, 35–42CrossRefGoogle Scholar
  2. Anis, A. A. (1975). Skewed inputs and the Hurst effect. J. Hydrol., 26, 39–53CrossRefGoogle Scholar
  3. Anis, A. A. (1976). The expected value of the adjusted resealed Hurst range of independent normal summands. Biometrika, 63, 111–16CrossRefGoogle Scholar
  4. Askew, A. J., Yeh, W. G. H., and Hall, W. A. (1971). A comparative study of critical drought simulation. Water Resour. Res., 7, 52–62CrossRefGoogle Scholar
  5. Bloomer, R. J. G., and Sexton, J. R. (1974). Problems encountered in synthetic river flow generation procedures. Proceedings of the 1971 Warsaw Symposium on Mathematical Models in Hydrology, vol. 1, International Association of Scientific Hydrology, Paris, pp. 91–103Google Scholar
  6. Boes, D. C., and Salas, J. D. (1973). On the expected range and expected adjusted range of partial sums of exchangeable random variables. J. Appl. Prob., 10, 671–7CrossRefGoogle Scholar
  7. Boes, D. C.,(1978). Nonstationarity of the mean and the Hurst phenomenon. Water Resour. Res., 14, 135–43Google Scholar
  8. Brunk, H. D. (1965). An Introduction to Mathematical Statistics, 2nd edn, Blaisdell, Waltham, MassachussettsGoogle Scholar
  9. Burges, S. J., and Linsley, R. K. (1971). Some factors influencing required reservoir storage. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng. 97 (HY7), 977–91. (1972). Discussion. Proc. Am. Soc. Civ. Eng. 98(HY4), 717–18; (HY11), 2038–9Google Scholar
  10. Chi, M., Neal, E., and Young, G.K. (1973). Practical application of fractional brownian motion and noise to synthetic hydrology. Water Resour. Res., 9, 1523–33CrossRefGoogle Scholar
  11. Cox, D. R., and Miller, H. D. (1965). The Theory of Stochastic Processes, Methuen, LondonGoogle Scholar
  12. Cramer, H. (1946). Mathematical Methods of Statistics, Princeton University Press, Princeton, New JerseyGoogle Scholar
  13. Cramér, H., and Leadbetter, M. R. (1967). Stationary and Related Stochastic Processes, Wiley, New YorkGoogle Scholar
  14. David, F. N., and Barton, D. E. (1962). Combinatorial Chance, Griffin, London Ditlevson, O. (1969). Extremes and First Passage Times with Applications in Civil Engineering, Danmarks Ingeniorakaddemi, CopenhagenGoogle Scholar
  15. Downer, R. N., Siddiqui, M. M., and Yevjevich, V. (1967). Application of runs to hydrologic droughts. Proceedings of the International Hydrology Symposium, vol. 1,Fort Collins, Colorado, pp. 496–505Google Scholar
  16. Einstein, A. (1906). Zur Theorie der Brownschen Bewegung. Annalen der Physik, IV, 19, 371–81CrossRefGoogle Scholar
  17. Feller, W. (1951). The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist., 22, 427–32CrossRefGoogle Scholar
  18. Feller, W. (1968). Introduction to Probability Theory and its Applications, vol. 1, 3rd edn, Wiley, New YorkGoogle Scholar
  19. Fiering, M. B. (1967). Streamflow Synthesis, Macmillan, LondonCrossRefGoogle Scholar
  20. Fisz, M. (1963). Probability Theory and Mathematical Statistics, 3rd edn, Wiley, New YorkGoogle Scholar
  21. Fraser, D. A. S. (1976). Probability and Statistics: Theory and Applications, Duxbury Press, North Scituate, MassachusettsGoogle Scholar
  22. Garcia, L. E., Dawdy, D. R., and Mejia, J. M. (1972). Long memory monthly streamflow simulation by broken line model. Water Resour. Res., 8, 1100–5CrossRefGoogle Scholar
  23. Gomide, F. L. S. (1978). Markovian inputs and the Hurst phenomenon. J. Hydrol.,37, 23–45CrossRefGoogle Scholar
  24. Guerrero-Salazar, P., and Yevjevich, V. (1975). Analysis of drought characteristics by the theory of runs. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 80Google Scholar
  25. Hall, W. A., Askew, A. J., and Yeh, W. W. G. (1969). Use of the critical period in reservoir analysis. Water Resour. Res., 5, 1205–15CrossRefGoogle Scholar
  26. Hazen, A. (1914). Storage to be provided in impounding reservoirs for municipal water supply. Trans. Am. Soc. Civ. Eng., 77, 1539–640Google Scholar
  27. Hipel, K. W., and McLeod, A. I. (1978). Preservation of the rescaled adjusted range, part one—a reassessment of the Hurst phenomenon. Water Resour. Res., 14, 491–508CrossRefGoogle Scholar
  28. Hufschmidt, M. M., and Fiering, M. B. (1966). Simulation Techniques for Design of Water Resource Systems, Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  29. Hurst, H. E. (1951). Long term storage capacity of reservoirs (with discussion). Trans. Am. Soc. Civ. Eng., 116, paper 2447, 770–808Google Scholar
  30. Hurst, H. E. (1956). Methods of using long term storage in reservoirs (with discussion).Proc. Inst. Civ. Eng., part I, 5, paper 6049, 519–90CrossRefGoogle Scholar
  31. Hurst, H. E. (1957). A suggested statistical model of some time series which occur in nature. Nature (London), 180, 494CrossRefGoogle Scholar
  32. Hurst, H. E., Black, R. P., and Simaika, Y. M. (1964). Long-Term Storage, An Experimental Study, Constable, LondonGoogle Scholar
  33. Klemeš, V. (1974). The Hurst phenomenon—a puzzle? Water Resour. Res., 10, 675–88CrossRefGoogle Scholar
  34. Klemeš, V. (1978). Discussion on `Sequent peak procedure: minimum reservoir capacity subject to constraint on final storage’ by K. W. Potter. Water Resour. Bull., 14, 991–3CrossRefGoogle Scholar
  35. Kottegoda, N. T. (1970). Applicability of short-memory models to English riverflow data. J. Inst. Water Eng., 24, 481–9.Google Scholar
  36. Kottegoda, N. T. (1971). Communication. J. inst. Water Eng., 25, 128–31Google Scholar
  37. Kottegoda, N. T. (1974). Effect of skewness in three stochastic riverflow models on crossing properites of synthesized data. Water Resour. Res., 10, 446–56CrossRefGoogle Scholar
  38. Lawrance, A. J., and Kottegoda, N.T.(1977). Stochastic modelling of riverflow time series (with discussion). J. R. Statist. Soc. A 140 1–47CrossRefGoogle Scholar
  39. Leadbetter, M. R. (1972). Point processes generated by level crossings. Stochastic Point Processes (ed. N. R. Lewis), Wiley, New York, pp. 436-67Google Scholar
  40. Llamas, J., and Siddiqui, M. M. (1969). Runs of precipitation series. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 33Google Scholar
  41. Mandelbrot, B. B. (1965). Une classe de processus stochastiques homothétiques à soi; application à la loi climatologique de H. E. Hurst. Comptes Rendus de L’Académie des Sciences de Paris, 260, 3274–7Google Scholar
  42. Mandelbrot, B. B. (1971). A fast fractional gaussian noise generator. Water Resour. Res., 7, 543–53CrossRefGoogle Scholar
  43. Mandelbrot, B. B. (1972). Broken line process derived as an approximation to fractional noise. Water Resour. Res., 8, 1354–6CrossRefGoogle Scholar
  44. Mandelbrot, B. B. (1977). Fractals, Form, Chance, and Dimension, Freeman, San Francisco,CaliforniaGoogle Scholar
  45. Mandelbrot, B. B., and Van Ness, J. W. (1968). Fractional brownian motions, fractional noises and applications. Soc. Ind. Appl. Math. Rev., 10, 422–37Google Scholar
  46. Mandelbrot, B. B., and Wallis, J. R. (1968). Noah, Joseph and operational hydrology. Water Resour. Res., 4, 909–20.CrossRefGoogle Scholar
  47. Mandelbrot, B. B., and Wallis, J. R. (1969). Letters and correction. Water Resour. Res., 5, 915–20, 1164CrossRefGoogle Scholar
  48. Mandelbrot, B. B.,(1969a). Computer experiments with fractional gaussian noises, parts 1, 2 and 3. Water Resour. Res., 5, 228–67. (1969). Correction. Water Resour. Res., 5, 1164CrossRefGoogle Scholar
  49. Mandelbrot, B. B.,(1969b). Some long-run properties of geophysical records. Water Resour.Res., 5, 321–40CrossRefGoogle Scholar
  50. Mandelbrot, B. B., (1969c). Robustness of the resealed range RIS in measurement of noncyclic long run statistical dependence. Water Resour. Res., 5, 967–88CrossRefGoogle Scholar
  51. Matalas, N. C., and Huzzen, C. S. (1967). A property of the range of partial sums. Proceedings of the International Hydrology Symposium, vol. 1, Fort Collins, Colorado, pp. 252–7Google Scholar
  52. Matalas, N. C., and Wallis, J. R. (1971). Statistical properties of multivariate fractional noise processes. Water Resour. Res., 7, 1460–8CrossRefGoogle Scholar
  53. Mejia, J. M., Dawdy,D. R., and Nordin, C. F. (1974). Streamflow simulation, 3, the broken line process and operational hydrology. Water Resour. Res., 10, 242–5CrossRefGoogle Scholar
  54. Mejia, J. M., Rodriguez—Iturbe, I., and Dawdy D. R. (1972). Streamflow simulation, 2, the broken line process as a potential model for hydrologic simulation. Water Resour. Res., 8, 931–41CrossRefGoogle Scholar
  55. Melentijevich, M. J. (1965). The analysis of range with output linearly dependent upon storage. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 15Google Scholar
  56. Millan, J. (1972). Drought impact on regional economy. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 55Google Scholar
  57. Mood, A. M. (1940). The distribution theory of runs. Ann. Math. Statist., 11, 367–92CrossRefGoogle Scholar
  58. Moran, P. A. P. (1959). The Theory of Storage, Wiley, New YorkGoogle Scholar
  59. Moran, P. A. P. (1964). On the range of cumulative sums. Ann. Inst. Statist. Math., Tokyo, 16, 109–12CrossRefGoogle Scholar
  60. Nordin, C. F., and Rosbjerg, D. M. (1970). Applications of crossing theory in hydrology. Bull. Int. Assoc. Sci. Hydrol., 15, 27–43CrossRefGoogle Scholar
  61. O’Connell, P. E. (1974). A simple stochastic modelling of Hurst’s law. Proceedings of the 1971 Warsaw Symposium on Mathematical Models in Hydrology, vol. 1, International Association of Scientific Hydrology, Paris, pp. 169–87Google Scholar
  62. Potter, K. W. (1976). Evidence for non-stationarity as a physical explanation of the Hurst phenomenon. Water Resour. Res. 12, 1047–52CrossRefGoogle Scholar
  63. Rice, S. O. (1945). Mathematical analysis of random noise. Bell Syst. Tech. J., 24, 46–156CrossRefGoogle Scholar
  64. Rippl, W. (1883). The capacity of storage reservoirs for water supply. Proc. Inst. Civ. Eng., 71, 270–8Google Scholar
  65. Rodriguez-Iturbe, I. (1969). Applications of the theory of runs to hydrology. Water Resour. Res., 5, 1422–6CrossRefGoogle Scholar
  66. Salas, J. D. (1972). Range analysis for storage problems of periodic-stochastic processes. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 57Google Scholar
  67. Salas, J. D., Boes, D. C., Yevjevich, V., and Pegram, G. G. S. (1977). On the Hurst phenomenon. Proceedings of the 3rd International Hydrological Symposium, Fort Collins, Colorado preprintsGoogle Scholar
  68. Saldarriaga, J., and Yevjevich, V. (1970). Application of run-lengths to hydrologic series. Colo. St. Univ., Fort Collins, Hydrol. Papers No. 40Google Scholar
  69. Scheidegger, A. E. (1970). Stochastic models in hydrology. Water Resour. Res., 6, 750–5CrossRefGoogle Scholar
  70. Sen, Z. (1976). Wet and dry periods of annual flow series. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng., 102 (HY10), 1503–14Google Scholar
  71. Siddiqui, M. M. (1976). The asymptotic distribution of the range and other functions of partial sums of stationary processes. Water Resour. Res., 12, 1271–6CrossRefGoogle Scholar
  72. Solari, M. E., and Anis, A. A. (1957). The mean and variance of the maximum of the adjusted partial sums of a finite number of independent normal variates. Ann. Math. Statist., 28, 706–16CrossRefGoogle Scholar
  73. Steinberg, R. M. (1968) Reservoir system simulation. Range of Choice in Water Management (ed. R. K. Davis), Johns Hopkins, Baltimore, MarylandGoogle Scholar
  74. Taylor, G. I. (1938). The spectrum of turbulence. Proc. R. Soc. London A, 164, 476–90CrossRefGoogle Scholar
  75. Tick, L. J., and Shaman, P. (1966). Sampling, rate and appearance of stationary gaussian processes. Technometrics, 8, 91–106CrossRefGoogle Scholar
  76. Tschannerl, G. (1971). Designing reservoirs with short streamflow records. Water Resour. Res., 7, 827–33CrossRefGoogle Scholar
  77. Wallis, J.R., and Matalas, N.C. (1970) Small sample properties of H and Kestimators of the Hurst coefficient h.Water Resour.Res.6,1583–94CrossRefGoogle Scholar
  78. Wallis, J. R. (1971). Correlogram analysis revisited. Water Resour. Res., 7, 1448–59CrossRefGoogle Scholar
  79. Wallis, J. R. (1972). Sensitivity of reservoir design to the generating mechanisms of inflows. Water Resour. Res., 8, 634–41CrossRefGoogle Scholar
  80. Wallis, J. R., and O’Connell, P. E. (1973). Firm reservoir yield—how reliable are historic hydrological records? Hydrol. Sci. Bull., 18, 347–65CrossRefGoogle Scholar
  81. Yevjevich, V. M. (1963). Fluctuations of wet and dry years, part I, research data assembly and mathematical models. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 1Google Scholar
  82. Yevjevich, V. M. (1967). Mean range of linearly dependent normal variables with application to storage problems. Water Resour. Res., 3, 663–71CrossRefGoogle Scholar
  83. Young, G. K., and Jettmar, R. V. (1976). Modelling monthly hydrologic persistence. Water Resour. Res., 12, 829–35CrossRefGoogle Scholar

Copyright information

© N. T. Kottegoda 1980

Authors and Affiliations

  • N. T. Kottegoda
    • 1
  1. 1.Department of Civil EngineeringUniversity of BirminghamUK

Personalised recommendations