Skip to main content

Special properties and models

  • Chapter
  • 488 Accesses

Abstract

This chapter concerns properties of special significance in hydrology. In the general class of crossing properties, theoretical aspects of runs, run lengths and sums are explained, and their practical relevance is discussed. Reservoir storage analysis which follows includes the Rippl diagram and the concepts of deficit and range. In this context the Hurst phenomenon, which has been an important subject of research and some controversy within the hydrological world and outside, is described, and the associated theoretical treatment of the rescaled range is taken up. Fractional gaussian processes which maintain the Hurst effect over very long time spans are explained. The final sections pertain to models that generate fractional noise and the broken-line model which is outlined. To aid the practitioner, some computer subroutines are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anis, A. A., and Lloyd, E. H. (1953). On the range of partial sums of a finite number of independent normal variates. Biometrika, 40, 35–42

    Article  Google Scholar 

  • Anis, A. A. (1975). Skewed inputs and the Hurst effect. J. Hydrol., 26, 39–53

    Article  Google Scholar 

  • Anis, A. A. (1976). The expected value of the adjusted resealed Hurst range of independent normal summands. Biometrika, 63, 111–16

    Article  Google Scholar 

  • Askew, A. J., Yeh, W. G. H., and Hall, W. A. (1971). A comparative study of critical drought simulation. Water Resour. Res., 7, 52–62

    Article  Google Scholar 

  • Bloomer, R. J. G., and Sexton, J. R. (1974). Problems encountered in synthetic river flow generation procedures. Proceedings of the 1971 Warsaw Symposium on Mathematical Models in Hydrology, vol. 1, International Association of Scientific Hydrology, Paris, pp. 91–103

    Google Scholar 

  • Boes, D. C., and Salas, J. D. (1973). On the expected range and expected adjusted range of partial sums of exchangeable random variables. J. Appl. Prob., 10, 671–7

    Article  Google Scholar 

  • Boes, D. C.,(1978). Nonstationarity of the mean and the Hurst phenomenon. Water Resour. Res., 14, 135–43

    Google Scholar 

  • Brunk, H. D. (1965). An Introduction to Mathematical Statistics, 2nd edn, Blaisdell, Waltham, Massachussetts

    Google Scholar 

  • Burges, S. J., and Linsley, R. K. (1971). Some factors influencing required reservoir storage. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng. 97 (HY7), 977–91. (1972). Discussion. Proc. Am. Soc. Civ. Eng. 98(HY4), 717–18; (HY11), 2038–9

    Google Scholar 

  • Chi, M., Neal, E., and Young, G.K. (1973). Practical application of fractional brownian motion and noise to synthetic hydrology. Water Resour. Res., 9, 1523–33

    Article  Google Scholar 

  • Cox, D. R., and Miller, H. D. (1965). The Theory of Stochastic Processes, Methuen, London

    Google Scholar 

  • Cramer, H. (1946). Mathematical Methods of Statistics, Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Cramér, H., and Leadbetter, M. R. (1967). Stationary and Related Stochastic Processes, Wiley, New York

    Google Scholar 

  • David, F. N., and Barton, D. E. (1962). Combinatorial Chance, Griffin, London Ditlevson, O. (1969). Extremes and First Passage Times with Applications in Civil Engineering, Danmarks Ingeniorakaddemi, Copenhagen

    Google Scholar 

  • Downer, R. N., Siddiqui, M. M., and Yevjevich, V. (1967). Application of runs to hydrologic droughts. Proceedings of the International Hydrology Symposium, vol. 1,Fort Collins, Colorado, pp. 496–505

    Google Scholar 

  • Einstein, A. (1906). Zur Theorie der Brownschen Bewegung. Annalen der Physik, IV, 19, 371–81

    Article  Google Scholar 

  • Feller, W. (1951). The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist., 22, 427–32

    Article  Google Scholar 

  • Feller, W. (1968). Introduction to Probability Theory and its Applications, vol. 1, 3rd edn, Wiley, New York

    Google Scholar 

  • Fiering, M. B. (1967). Streamflow Synthesis, Macmillan, London

    Book  Google Scholar 

  • Fisz, M. (1963). Probability Theory and Mathematical Statistics, 3rd edn, Wiley, New York

    Google Scholar 

  • Fraser, D. A. S. (1976). Probability and Statistics: Theory and Applications, Duxbury Press, North Scituate, Massachusetts

    Google Scholar 

  • Garcia, L. E., Dawdy, D. R., and Mejia, J. M. (1972). Long memory monthly streamflow simulation by broken line model. Water Resour. Res., 8, 1100–5

    Article  Google Scholar 

  • Gomide, F. L. S. (1978). Markovian inputs and the Hurst phenomenon. J. Hydrol.,37, 23–45

    Article  Google Scholar 

  • Guerrero-Salazar, P., and Yevjevich, V. (1975). Analysis of drought characteristics by the theory of runs. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 80

    Google Scholar 

  • Hall, W. A., Askew, A. J., and Yeh, W. W. G. (1969). Use of the critical period in reservoir analysis. Water Resour. Res., 5, 1205–15

    Article  Google Scholar 

  • Hazen, A. (1914). Storage to be provided in impounding reservoirs for municipal water supply. Trans. Am. Soc. Civ. Eng., 77, 1539–640

    Google Scholar 

  • Hipel, K. W., and McLeod, A. I. (1978). Preservation of the rescaled adjusted range, part one—a reassessment of the Hurst phenomenon. Water Resour. Res., 14, 491–508

    Article  Google Scholar 

  • Hufschmidt, M. M., and Fiering, M. B. (1966). Simulation Techniques for Design of Water Resource Systems, Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Hurst, H. E. (1951). Long term storage capacity of reservoirs (with discussion). Trans. Am. Soc. Civ. Eng., 116, paper 2447, 770–808

    Google Scholar 

  • Hurst, H. E. (1956). Methods of using long term storage in reservoirs (with discussion).Proc. Inst. Civ. Eng., part I, 5, paper 6049, 519–90

    Article  Google Scholar 

  • Hurst, H. E. (1957). A suggested statistical model of some time series which occur in nature. Nature (London), 180, 494

    Article  Google Scholar 

  • Hurst, H. E., Black, R. P., and Simaika, Y. M. (1964). Long-Term Storage, An Experimental Study, Constable, London

    Google Scholar 

  • Klemeš, V. (1974). The Hurst phenomenon—a puzzle? Water Resour. Res., 10, 675–88

    Article  Google Scholar 

  • Klemeš, V. (1978). Discussion on `Sequent peak procedure: minimum reservoir capacity subject to constraint on final storage’ by K. W. Potter. Water Resour. Bull., 14, 991–3

    Article  Google Scholar 

  • Kottegoda, N. T. (1970). Applicability of short-memory models to English riverflow data. J. Inst. Water Eng., 24, 481–9.

    Google Scholar 

  • Kottegoda, N. T. (1971). Communication. J. inst. Water Eng., 25, 128–31

    Google Scholar 

  • Kottegoda, N. T. (1974). Effect of skewness in three stochastic riverflow models on crossing properites of synthesized data. Water Resour. Res., 10, 446–56

    Article  Google Scholar 

  • Lawrance, A. J., and Kottegoda, N.T.(1977). Stochastic modelling of riverflow time series (with discussion). J. R. Statist. Soc. A 140 1–47

    Article  Google Scholar 

  • Leadbetter, M. R. (1972). Point processes generated by level crossings. Stochastic Point Processes (ed. N. R. Lewis), Wiley, New York, pp. 436-67

    Google Scholar 

  • Llamas, J., and Siddiqui, M. M. (1969). Runs of precipitation series. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 33

    Google Scholar 

  • Mandelbrot, B. B. (1965). Une classe de processus stochastiques homothétiques à soi; application à la loi climatologique de H. E. Hurst. Comptes Rendus de L’Académie des Sciences de Paris, 260, 3274–7

    Google Scholar 

  • Mandelbrot, B. B. (1971). A fast fractional gaussian noise generator. Water Resour. Res., 7, 543–53

    Article  Google Scholar 

  • Mandelbrot, B. B. (1972). Broken line process derived as an approximation to fractional noise. Water Resour. Res., 8, 1354–6

    Article  Google Scholar 

  • Mandelbrot, B. B. (1977). Fractals, Form, Chance, and Dimension, Freeman, San Francisco,California

    Google Scholar 

  • Mandelbrot, B. B., and Van Ness, J. W. (1968). Fractional brownian motions, fractional noises and applications. Soc. Ind. Appl. Math. Rev., 10, 422–37

    Google Scholar 

  • Mandelbrot, B. B., and Wallis, J. R. (1968). Noah, Joseph and operational hydrology. Water Resour. Res., 4, 909–20.

    Article  Google Scholar 

  • Mandelbrot, B. B., and Wallis, J. R. (1969). Letters and correction. Water Resour. Res., 5, 915–20, 1164

    Article  Google Scholar 

  • Mandelbrot, B. B.,(1969a). Computer experiments with fractional gaussian noises, parts 1, 2 and 3. Water Resour. Res., 5, 228–67. (1969). Correction. Water Resour. Res., 5, 1164

    Article  Google Scholar 

  • Mandelbrot, B. B.,(1969b). Some long-run properties of geophysical records. Water Resour.Res., 5, 321–40

    Article  Google Scholar 

  • Mandelbrot, B. B., (1969c). Robustness of the resealed range RIS in measurement of noncyclic long run statistical dependence. Water Resour. Res., 5, 967–88

    Article  Google Scholar 

  • Matalas, N. C., and Huzzen, C. S. (1967). A property of the range of partial sums. Proceedings of the International Hydrology Symposium, vol. 1, Fort Collins, Colorado, pp. 252–7

    Google Scholar 

  • Matalas, N. C., and Wallis, J. R. (1971). Statistical properties of multivariate fractional noise processes. Water Resour. Res., 7, 1460–8

    Article  Google Scholar 

  • Mejia, J. M., Dawdy,D. R., and Nordin, C. F. (1974). Streamflow simulation, 3, the broken line process and operational hydrology. Water Resour. Res., 10, 242–5

    Article  Google Scholar 

  • Mejia, J. M., Rodriguez—Iturbe, I., and Dawdy D. R. (1972). Streamflow simulation, 2, the broken line process as a potential model for hydrologic simulation. Water Resour. Res., 8, 931–41

    Article  Google Scholar 

  • Melentijevich, M. J. (1965). The analysis of range with output linearly dependent upon storage. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 15

    Google Scholar 

  • Millan, J. (1972). Drought impact on regional economy. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 55

    Google Scholar 

  • Mood, A. M. (1940). The distribution theory of runs. Ann. Math. Statist., 11, 367–92

    Article  Google Scholar 

  • Moran, P. A. P. (1959). The Theory of Storage, Wiley, New York

    Google Scholar 

  • Moran, P. A. P. (1964). On the range of cumulative sums. Ann. Inst. Statist. Math., Tokyo, 16, 109–12

    Article  Google Scholar 

  • Nordin, C. F., and Rosbjerg, D. M. (1970). Applications of crossing theory in hydrology. Bull. Int. Assoc. Sci. Hydrol., 15, 27–43

    Article  Google Scholar 

  • O’Connell, P. E. (1974). A simple stochastic modelling of Hurst’s law. Proceedings of the 1971 Warsaw Symposium on Mathematical Models in Hydrology, vol. 1, International Association of Scientific Hydrology, Paris, pp. 169–87

    Google Scholar 

  • Potter, K. W. (1976). Evidence for non-stationarity as a physical explanation of the Hurst phenomenon. Water Resour. Res. 12, 1047–52

    Article  Google Scholar 

  • Rice, S. O. (1945). Mathematical analysis of random noise. Bell Syst. Tech. J., 24, 46–156

    Article  Google Scholar 

  • Rippl, W. (1883). The capacity of storage reservoirs for water supply. Proc. Inst. Civ. Eng., 71, 270–8

    Google Scholar 

  • Rodriguez-Iturbe, I. (1969). Applications of the theory of runs to hydrology. Water Resour. Res., 5, 1422–6

    Article  Google Scholar 

  • Salas, J. D. (1972). Range analysis for storage problems of periodic-stochastic processes. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 57

    Google Scholar 

  • Salas, J. D., Boes, D. C., Yevjevich, V., and Pegram, G. G. S. (1977). On the Hurst phenomenon. Proceedings of the 3rd International Hydrological Symposium, Fort Collins, Colorado preprints

    Google Scholar 

  • Saldarriaga, J., and Yevjevich, V. (1970). Application of run-lengths to hydrologic series. Colo. St. Univ., Fort Collins, Hydrol. Papers No. 40

    Google Scholar 

  • Scheidegger, A. E. (1970). Stochastic models in hydrology. Water Resour. Res., 6, 750–5

    Article  Google Scholar 

  • Sen, Z. (1976). Wet and dry periods of annual flow series. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng., 102 (HY10), 1503–14

    Google Scholar 

  • Siddiqui, M. M. (1976). The asymptotic distribution of the range and other functions of partial sums of stationary processes. Water Resour. Res., 12, 1271–6

    Article  Google Scholar 

  • Solari, M. E., and Anis, A. A. (1957). The mean and variance of the maximum of the adjusted partial sums of a finite number of independent normal variates. Ann. Math. Statist., 28, 706–16

    Article  Google Scholar 

  • Steinberg, R. M. (1968) Reservoir system simulation. Range of Choice in Water Management (ed. R. K. Davis), Johns Hopkins, Baltimore, Maryland

    Google Scholar 

  • Taylor, G. I. (1938). The spectrum of turbulence. Proc. R. Soc. London A, 164, 476–90

    Article  Google Scholar 

  • Tick, L. J., and Shaman, P. (1966). Sampling, rate and appearance of stationary gaussian processes. Technometrics, 8, 91–106

    Article  Google Scholar 

  • Tschannerl, G. (1971). Designing reservoirs with short streamflow records. Water Resour. Res., 7, 827–33

    Article  Google Scholar 

  • Wallis, J.R., and Matalas, N.C. (1970) Small sample properties of H and Kestimators of the Hurst coefficient h.Water Resour.Res.6,1583–94

    Article  Google Scholar 

  • Wallis, J. R. (1971). Correlogram analysis revisited. Water Resour. Res., 7, 1448–59

    Article  Google Scholar 

  • Wallis, J. R. (1972). Sensitivity of reservoir design to the generating mechanisms of inflows. Water Resour. Res., 8, 634–41

    Article  Google Scholar 

  • Wallis, J. R., and O’Connell, P. E. (1973). Firm reservoir yield—how reliable are historic hydrological records? Hydrol. Sci. Bull., 18, 347–65

    Article  Google Scholar 

  • Yevjevich, V. M. (1963). Fluctuations of wet and dry years, part I, research data assembly and mathematical models. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 1

    Google Scholar 

  • Yevjevich, V. M. (1967). Mean range of linearly dependent normal variables with application to storage problems. Water Resour. Res., 3, 663–71

    Article  Google Scholar 

  • Young, G. K., and Jettmar, R. V. (1976). Modelling monthly hydrologic persistence. Water Resour. Res., 12, 829–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1980 N. T. Kottegoda

About this chapter

Cite this chapter

Kottegoda, N.T. (1980). Special properties and models. In: Stochastic Water Resources Technology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03467-3_5

Download citation

Publish with us

Policies and ethics