Skip to main content

Linear stochastic models

  • Chapter

Abstract

This chapter concerns types of linear models that are used to represent stochastic processes. The purpose is to generate likely future sequences of data for design and planning. In general, the models are formulated so that the current value of a variable is the weighted sum of past values and random numbers which represent unknown effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716–23

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, B. D. O. (1971). A qualitative introduction to Wiener and Kalman–Bucy Filters. Proc. Inst. Radio Electron. Eng. Aust., March, 93–103

    Google Scholar 

  • Anderson, O. D. (1976). Time Series Analysis and Forecasting—The Box–Jenkins Approach, Butterworths, London

    Google Scholar 

  • Anderson, R. L. (1942). Distribution of the serial correlation coefficient. Ann. Math. Statist., 13, 1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. J. Am. Statist. Assoc., 52, 200–3

    Article  MathSciNet  MATH  Google Scholar 

  • Beard, L. R. (1965). Use of interrelated records to simulate streamflow. J. Hydraul. Div., Am. Soc. Civ. Eng., 91 (HY5), 13–22.

    Google Scholar 

  • Beard, L. R. (1967). Simulation of daily streamflow. Proceedings of the International Hydrology Symposium, vol. 1, Fort Collins, Colorado, pp. 624–32

    Google Scholar 

  • Bernier, J. (1970). Inventaire des modèles des processus stochastiques applicables à la description des débits journaliers des rivières. Rev. Int. Statist. Inst., 38, 49–61

    Article  Google Scholar 

  • Borgman, L. E., and Amorocho, J. (1970). Some statistical problems in hydrology. Rev. Int. Statist. Inst., 38, 82–96

    Article  Google Scholar 

  • Box, G. E. P., and Cox, D. R. (1964). An analysis of transformations. J. R. Statist. Soc. B, 26, 211–52

    MathSciNet  MATH  Google Scholar 

  • Box, G. E. P., and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control, revised edn, Holden Day, San Francisco, California

    MATH  Google Scholar 

  • Brewer, H. W. (1976). Identification of the noise in a Kalman filter. Control and Dynamic Systems, Advances in Theory and Applications, vol. 12 (ed. C. T. Leondes), Academic Press, New York, pp. 491–579

    Google Scholar 

  • Carlson, R. E., MacCormick, A. J. A., and Watts, D. G. (1970). Application of linear random models to four annual streamflow series. Water Resour. Res., 6, 1070–8

    Article  Google Scholar 

  • Chatfield, C., and Prothero, D. L. (1973). Box—Jenkins seasonal forecasting: problems in a case-study, with discussion. J. R. Statist. Soc. A, 136, 295–352

    Article  Google Scholar 

  • Clarke, R. T. (1974). The representation of a short period of experimental catchment data by a linear stochastic difference equation. Proceedings of the 1971 Warsaw Symposium on Mathematical Models in Hydrology, vol. 1, International Association of Scientific Hydrology, Paris, pp. 3–16

    Google Scholar 

  • Codner, G. P., and McMahon, T. A. (1973). Lognormal streamflow generation models re-examined. J. Hydraul. Div., Am. Soc. Civ. Eng., 99 (HY9), 1421–31

    Google Scholar 

  • Crosby, D. S., and Maddock, T., III(1970). Estimating coefficients of a flow generator from monotone samples of data. Water Resour. Res., 6, 1079–86

    Article  Google Scholar 

  • Davies, N., Triggs, C. M., and Newbold, P. (1977). Significance levels of the Box—Pierce portmanteau statistic in finite samples. Biometrika, 64, 517–22

    Article  MathSciNet  MATH  Google Scholar 

  • Delleur, J. W., Tao, P. C., and Kavvas, M. L. (1976). An evaluation of the practicality and complexity of some rainfall and runoff time series models. Water Resour. Res., 12, 953–70

    Article  Google Scholar 

  • Doi, K. (1978). Physical reality of shot noise model for the short-term variability of cyg X-1. Nature (London), 275, 197–8

    Article  Google Scholar 

  • Dooge, J. C. I. (1972). Mathematical models of hydrologic systems. Modelling of Water Resource Systems, vol 1 (ed. A. K. Biswas), Harvest House, Montreal, pp. 170–88

    Google Scholar 

  • Duong, N., Winn, C. B., and Johnson, G. R. (1975). Modern control concepts in hydrology. IEEE Trans. Syst. Manage. Cybern., 5, 46–53

    Article  Google Scholar 

  • Durbin, J. (1960). The fitting of time-series models. Rev. Int. Statist. Inst., 28, 233–44

    Article  MATH  Google Scholar 

  • Ekern, S. (1976). Forecasting with adaptive filtering: a critical re-examination. Oper. Res. Q., 27, 705–15

    Article  MATH  Google Scholar 

  • Fiering, M. B. (1964). Multivariate technique for synthetic hydrology. J. Hydraul. Div., Am. Soc. Civ. Eng., 90 (HY5), 43–60

    Google Scholar 

  • Fiering, M. B. (1967). Streamflow Synthesis, Macmillan, London

    Book  Google Scholar 

  • Fiering, M. B. (1968). Schemes for handling inconsistent matrices. Water Resour. Res., 4, 291–7

    Article  Google Scholar 

  • Gelb, A. (ed.) (1974): Applied Optimal Estimation, Massachusetts Institute of Technology Press, Cambridge, Massachusetts

    Google Scholar 

  • Granger, C. W. J., and Morris, M. J. (1976). Time series modelling and interpretation. J. R. Statist. Soc. A, 139, 246–57

    Article  MathSciNet  Google Scholar 

  • Green, N. M. D. (1973). A synthetic model for daily streamflow. J. Hydrol., 20, 351–64

    Article  Google Scholar 

  • Gupta, V. L., and Fordham, J. W. (1972). Streamflow synthesis—a case study. J. Hydraul. Div., Am. Soc. Civ. Eng., 98 (HY6), 1049–55

    Google Scholar 

  • Hamlin, M. J., and Kottegoda, N. T. (1971). Extending the record of the Terne. J. Hydrol., 12, 100–16

    Article  Google Scholar 

  • Hamlin, M. J.,(1974). The preparation of a data set for hydrological system analysis.Design of Water Resources Projects with Inadequate Data, vol. 1, Symposium, Madrid, 1973, Int. Assoc. Sci. Hydrol. Publ., No. 108, pp. 163–77

    Google Scholar 

  • Hamlin, M. J., Kottegoda, N. T., and Kitson, T. (1976). Control of a river system with two reservoirs. 1974 Symposium on the Control of Water Resource Systems, Haiffa, Israel, J. Hydrol., 28, 155–73

    Google Scholar 

  • Harrison, P. J., and Stevens, C. F. (1976). Bayesian forecasting. J. R. Statist. Soc. B, 38, 205–47

    MathSciNet  MATH  Google Scholar 

  • Hinkley, D. (1977). On quick choice of power transformation. Appl. Statist., 26, 67–9

    Article  Google Scholar 

  • Hipel, K. W., McLeod, A. I., and Lennox, W. C. (1977). Advances in Box–Jenkins modelling, 1, model construction. Water Resour. Res., 13, 567–75

    Article  Google Scholar 

  • Hovanessian, S. A. (1976). Computational Mathematics in Engineering, Lexington Books, Lexington, Massachusetts

    Google Scholar 

  • Jazwinski, A. H. (1969). Adaptive filtering. Automatica, 5, 475–85

    Article  MATH  Google Scholar 

  • Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory, Academic Press, New York

    MATH  Google Scholar 

  • Jenkins, R. H., and Watts, D. G. (1968). Spectral Analysis and its Applications, Holden Day, San Francisco, California

    MATH  Google Scholar 

  • Jettmar, R. U., and Young, G. K. (1975). Hydrologic estimation and economic regret. Water. Resour. Res., 11, 648–56

    Article  Google Scholar 

  • Kahan, J. P. (1974). A method for maintaining cross and serial correlations and the coefficient of skewness under generation in the linear bivariate regression model. Water Resour. Res., 10, 1245–8

    Article  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng., Trans. Am. Soc. Mech. Eng. D, 82,35–45

    Article  Google Scholar 

  • Kalman, R. E., and Bucy, R. S. (1961). New results in linear filtering and prediction theory. J. Basic Eng., Trans. Am. Soc. Mech. Eng. D, 83, 95–108

    Article  MathSciNet  Google Scholar 

  • Kendall, M. G. (1976). Time Series, 2nd edn, Griffin, London

    MATH  Google Scholar 

  • Kottegoda, N. T. (1970). Statistical methods of river flow synthesis for water resources assessment, with discussion. Proc. Inst. Civ..Eng., paper 7339S, suppl. XVIII, 415–42

    Google Scholar 

  • Kottegoda, N. T. (1972). Stochastic five daily stream flow model. J. Hydraul. Div., Am. Soc.Civ. Eng., 98 (HY9), 1469–85

    Google Scholar 

  • Kottegoda, N. T., and Elgy, J.(1977). Infilling missing flow data. Proceedings of the 3rd International Hydrology Symposium, Fort Collins, Colorado preprints

    Google Scholar 

  • Kottegoda, N. T., and Yevjevich, V. (1977). Preservation of correlation in generated hydrologic samples through two-station models. J. Hydrol., 33, 99–121

    Article  Google Scholar 

  • Lawrance, A. J. (1976). A reconsideration of the Fiering two-station model. J. Hydrol., 29, 77–85

    Article  Google Scholar 

  • Lawrance, A. J., and Kottegoda, N. T. (1977). Stochastic modelling of riverflow time series, with discussion. J. R. Statist. Soc. A, 140, 1–47

    Article  Google Scholar 

  • Ledolter,J.(1978). The analysis of multivariate time series applied to problems in hydrology. J. Hydrol. 36, 327–52

    Article  Google Scholar 

  • Lettenmaier, D. P., and Burges, S. J. (1976). Use of state estimation techniques in water resource system modelling. Water Resour. Bull., 12, 83–99. (1977). Discussion. Water Resour. Bull., 13, 161–7, 1289–91

    Article  Google Scholar 

  • McClave, J. T. (1978). Estimating the order of autoregressive models: the max x2 method. J. Am. Statist. Assoc. 73, 122–8

    MATH  Google Scholar 

  • McGregor, J. R. (1962). The approximate distribution of the correlation between two stationary linear Markov series. Biometrika, 49 379–88

    Google Scholar 

  • McKerchar, A. I., and Delleur, J. W. (1974). Application of seasonal parametric linear stochastic models to monthly flow data. Water Resour. Res., 10, 246–55

    Article  Google Scholar 

  • McMichael, F. C., and Hunter, J. S. (1972). Stochastic modelling of temperature and flow in rivers. Water Resour. Res., 8, 87–98

    Article  Google Scholar 

  • Maissis, A. H. (1977). Optimal filtering techniques for hydrological forecasting. J. Hydrol., 33, 319–30

    Article  Google Scholar 

  • Makhoul,J.(1975). Linear prediction: a tutorial review. Proc. IEEE, 63 561–80

    Article  Google Scholar 

  • Mandelbrot, B. B. (1976). Note on the definition and the stationarity of fractional gaussian noise. J. Hydrol., 30, 407–9

    Article  Google Scholar 

  • Markov, A. A. (1907). Investigation of a noteworthy case of dependent trials. Izvestiya Rossiiskoi Akademii Nauk,1

    Google Scholar 

  • Marriott, F. H. C., and Pope, J. A. (1954). Bias in the estimation of autocorrelations. Biometrika, 41, 390–402

    Article  MathSciNet  MATH  Google Scholar 

  • Matalas, N. C. (1967). Mathematical assessment of synthetic hydrology. Water Resour. Res., 3, 937–45

    Article  Google Scholar 

  • Mejia, J. M., and Rodriguez-Iturbe, I. R. (1974). Correlation links between normal and log normal processes. Water Resour. Res., 10, 689–90

    Article  Google Scholar 

  • Mejia, J. M., and Rousselle, J. (1976). Disaggregration models in hydrology revisited. Water Resour. Res., 12, 185–6

    Article  Google Scholar 

  • Moran, P. A. P. (1970). Simulation and evaluation of complex water systems operations. Water Resour. Res., 6, 1737–42

    Article  Google Scholar 

  • Moss, M. E. (1972). Reduction of uncertainties in autocorrelation by the use of physical models. Proceedings of the International Symposium on Uncertainties in Hydrologic and Water Resource Systems, vol. 1, 11–14

    Google Scholar 

  • Moss, M. E. December 1972, University of Arizona, Tucson, pp. 203–29

    Google Scholar 

  • Nelson, C. R. (1976). The interpretation of R2 in autoregressive moving average time series models. Am. Statist., 30, 175–80

    MATH  Google Scholar 

  • O’Donnell, T., Hall, M. J., and O’Connell, P. E. (1972). Some applications of stochastic hydrological models. Modelling of Water Resource Systems, vol. 1 (ed. A. K. Biswas), Harvest House, Montreal, pp. 250–62

    Google Scholar 

  • Parzen, E. (1962). Stochastic Processes, Holden Day, San Francisco, California

    MATH  Google Scholar 

  • Payne, K., Neuman, W. R., and Kerri, K. D. (1969). Daily streamflow simulation. J. Hydraul. Div., Am. Soc. Civ. Eng., 95 (HY4), 1163–79

    Google Scholar 

  • Pegram, G. G. S., and James, W. (1972). Multilag multivariate autoregressive model for the generation of operational hydrology. Water Resour. Res., 8, 1074–6

    Article  Google Scholar 

  • Phatarfod, R. M. (1976). Some aspects of stochastic reservoir theory. J. Hydrol., 30, 199–217

    Article  Google Scholar 

  • Quenouille, M. H. (1949). Approximate tests of correlation in time series. J. R. Statist. Soc. B, 11, 68–84

    MathSciNet  MATH  Google Scholar 

  • Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika, 43, 353–60

    Article  MathSciNet  MATH  Google Scholar 

  • Quenouille, M. H. (1957). The Analysis of Multiple Time Series, Statistical Monographs No. 1, Griffin, London

    Google Scholar 

  • Quimpo, R. G. (1968). Stochastic analysis of daily riverflows. J. Hydraul. Div., Am. Soc. Civ. Eng., 94 (HY1), 43–57

    Google Scholar 

  • Rao, R. A., and Kashyap, R. L. (1974). Stochastic difference equation modelling of hydrologic processes. Proceedings of the 1971 Warsaw Symposium on Mathematical Models in Hydrology, vol. 1, International Association of Scientific Hydrology, Paris, pp. 140–50

    Google Scholar 

  • Roesner, L. A., and Yevjevich, V. M. (1966). Mathematical models for time series of monthly precipitation and monthly runoff. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 15

    Google Scholar 

  • Salas, J. D., and Pegram, G. G. S. (1977). A seasonal multivariate multilag autoregressive model in hydrology. Proceedings of the 3rd International Hydrology Symposium, Fort Collins, Colorado, preprints

    Google Scholar 

  • Sorenson, H. W. (1968). Controllability and observability of linear, stochastic, time-discrete control systems. Adv. Control Syst., 6, 95–158

    MathSciNet  MATH  Google Scholar 

  • Sorenson, H. W. (1970). Least squares estimation: from Gauss to Kalman. IEEE Spectrum, 7, 63–8

    Article  Google Scholar 

  • Swerling, P. (1959). A proposed stagewise differential correction procedure for satellite tracking and prediction, J. Astronaut. Sci., 6; Rand Corp., Santa Monica, Calif., Rep., No. P-1292

    Google Scholar 

  • Szöllösi-Nagy, A. (1975). An adaptive identification and prediction algorithm for the real-time forecasting of hydrologic time series. Proceedings of the International Symposium and Workshop on the Application of Mathematical Models in Hydrology and Water Resource Systems, International Association of Scientific Hydrology, Bratislava, preprints

    Google Scholar 

  • Szöllösi-Nagy,A.(1976). An adaptive identification and prediction algorithm for the real time forecasting of hydrological time series. Hydrol. Sci. Bull., 21, 163–76

    Article  Google Scholar 

  • Thomas, H. A., and Fiering, M. B. (1962). Mathematical synthesis of streamflow sequences for the analysis of river basins by simulation. Design of Water Resource Systems (eds A. Maass et al.), Harvard University Press, Cambridge, Massachusetts, chapter 12, pp. 459–93

    Google Scholar 

  • Thompson, H. E., and Tiao, G. C. (1971). Analysis of telephone data: a case study of forecasting seasonal time series. Bell J. Econ. Manage. Sci., 2, 5 15–41

    Article  Google Scholar 

  • Tillotson, A., and Cluckie, I. D. (1977). Linear models for flow estimation and prediction. Proceedings of the 3rd International Hydrology Symposium, Fort Collins, Colorado, preprints

    Google Scholar 

  • Todini, E., and Bouillot, D. (1976). A rainfall run-off Kalman filter model. System Simulation in Water Resources (ed. G. C. Vansteenkiste), North-Holland, Amsterdam

    Google Scholar 

  • Toyoda, J., Toriumi, N., and Inoue, Y. (1969). An adaptive predictor of river flow for on line control of water resource systems. Automatica, 4, 175–81

    Article  Google Scholar 

  • Treiber, B., and Plate, E. J. (1975). A stochastic model for the simulation of daily flows. Proceedings of the International Symposium and Workshop on the Application of Mathematical Models in Hydrology and Water Resource Systems, International Association of Scientific Hydrology, Bratislava, preprints

    Google Scholar 

  • Valencia, R. D., and Schaake, J. C., Jr. (1973). Disaggregation processes in stochastic hydrology. Water Resour. Res., 9, 580–5

    Article  Google Scholar 

  • Walker, Sir Gilbert (1931). On periodicity in series of related terms. Proc. R. Soc. London A, 131, 518–32

    Article  MATH  Google Scholar 

  • Weiss, G. (1977). Shot noise models for synthetic generation of multisite daily streamflow data. Water Resour. Res., 13, 101–8

    Article  Google Scholar 

  • Wheelwright,S.C., and Makridakis, S. (1973). An examination of the use of adaptive filtering in forecasting. Oper. Res. Q., 24, 55–64

    Article  MATH  Google Scholar 

  • Wheelwright,S.C.,(1977). Forecasting Methods for Management 2nd edn, Wiley, New York

    Google Scholar 

  • Wiener, N. (1949). The Extrapolation, Interpolation and Smoothing of Stationary Time Series, Wiley, New York

    MATH  Google Scholar 

  • Wold, H. (1954). A Study in the Analysis of Stationary Time Series, 2nd edn, Almqvist and Wiksell, Stockholm

    MATH  Google Scholar 

  • Yakowitz, S. J. (1973). A stochastic model for daily river flows in an arid region. Water Resour. Res., 9, 1271–85

    Article  Google Scholar 

  • Yevjevich, V. M. (1963). Fluctuations of wet and dry years, part I, research data assembly and mathematical models. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 1

    Google Scholar 

  • Yevjevich, V. M. (1966). Stochastic problems in the design of reservoirs. Water Research (eds A. V. Kneese and S. C. Smith), John Hopkins Press, Baltimore, pp. 375–411.

    Google Scholar 

  • Yevjevich, V. M. (1972). Structural analysis of hydrologic time series, Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 56

    Google Scholar 

  • Young, G. K. (1968). Discussion of ‘Mathematical assessment of synthetic hydrology’ by N. C. Matalas. Water Resour. Res., 4, 681–3

    Article  Google Scholar 

  • Young, G. K., and Pisano, W. C. (1968). Operational hydrology using residuals. J. Hydraul. Div., Am. Soc. Civ. Eng., 94 (HY4), 909–23

    Google Scholar 

  • Young, P. (1974). Recursive approaches to time series analysis. J. Inst. Math. Its Appl., 10, 209–29

    Google Scholar 

  • Yule, G. U. (1921). On the time correlation problem with special preference to the variate-difference correlation method. J. R. Statist. Soc., 84, 497–537

    Article  Google Scholar 

  • Yevjevich, V. M. (1927). On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Philos. Trans. A, 226, 267–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1980 N. T. Kottegoda

About this chapter

Cite this chapter

Kottegoda, N.T. (1980). Linear stochastic models. In: Stochastic Water Resources Technology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03467-3_4

Download citation

Publish with us

Policies and ethics