Probability functions and their use

  • N. T. Kottegoda


Specification of the distributions of random variables is important for the formulation of mathematical models explained in the next two chapters and in the application of probabilistic methods treated in chapters 7, 8 and 9. For instance, the preservation of extreme values and other properties, explained in chapters 5 and 6, in a realistic manner is dependent on the appropriate choice of probability functions.


Probability Density Function Probability Function Annual Flow Class Interval Pearson Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., and Stegun, I. A. (eds) (1964). Handbook of mathematical functions. Nat! Bur. Stand. (U.S.), Appl. Math. Sec., Pub!, No.55; Handbook of Mathematical Functions, Dover Publications, New YorkGoogle Scholar
  2. Aitchison, J., and Brown, J. A. C. (1957). The Lognormal Distribution, Cambridge University Press, LondonGoogle Scholar
  3. Atkinson, A. C., and Whittaker, J. (1976). A switching algorithm for the generation of beta random variables with at least one parameter less than 1. J. R. Statist. Soc. A, 139, 462–7CrossRefGoogle Scholar
  4. Barnard, G. A. (1947). The meaning of a significance level, Biometrika, 34, 179–82CrossRefGoogle Scholar
  5. Beyer W. H. (ed.) (1968). Handbook of Tables in Probability and Statistics, Chemical Rubber Co., OhioGoogle Scholar
  6. Beasley, J. D., and Springer, S. G. (1977). The percentage points of the normal distribution. Appl. Statist., 26 118–21CrossRefGoogle Scholar
  7. Best, D. J., and Roberts, D. E. (1975). The percentage points of the X2 distribution. Appl. Statist., 24, 385–8CrossRefGoogle Scholar
  8. Birnbaum, Z. W. (1952). Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size. J. Am. Statist. Assoc., 47, 425–41CrossRefGoogle Scholar
  9. Box, G. E. P., and Cox, D. R. (1964). An analysis of transformations. J. R. Statist. Soc. B., 26, 211–52Google Scholar
  10. Box, G. E. P., and Muller, M. E. (1958). A note on the generation of random normal deviates. Ann. Math. Statist., 29, 610–11CrossRefGoogle Scholar
  11. Butler, E. L. (1970). General random number generator (G5). Commun. Assoc. Comput. Mach., 13, 49–52Google Scholar
  12. Chen, E. H. (1971). A random normal number generator for 32-bit-word computers. J. Am. Statist. Assoc., 66, 400–3CrossRefGoogle Scholar
  13. Cheng, R. C. H. (1977). The generation of gamma variables with non-integral shape parameter. Appl. Statist., 26, 71–5CrossRefGoogle Scholar
  14. Cran, G. W., Martin, K. J., and Thomas, G. E. (1977). A remark on algorithms, AS63: the incomplete beta integral, AS64: inverse of the incomplete beta function ratio. Appl. Statist., 26, 111–14CrossRefGoogle Scholar
  15. D’Agostino, R., and Noether, G. E. (1973). On the evaluation of the Kolmogorov statistic. Am. Statist., 27, 81–2Google Scholar
  16. D’Agostino, R., and Pearson, E. S. (1973). Tests for departure from normality. Empirical results for the distributions of b2 and b1. Biometrika, 60, 613–22Google Scholar
  17. Davis, H. T. (1935). Tables of the Higher Mathematical Functions, vol. 2, Principia Press, Bloomington, IndianaGoogle Scholar
  18. Daw, R. H. (1966). Why the normal distribution? J. Inst. Actuaries Students Soc., 18, 2–15Google Scholar
  19. Elderton, W.P. and Johnson, N. L. (1969). Systems of Frequency Curves University Press, Cambridge, MassachusettsCrossRefGoogle Scholar
  20. Encyclopaedia Brittanica (1932), vol. 18, The Encyclopaedia Brittanica Co. Ltd, London, pp. 529–39Google Scholar
  21. Encyclopaedia Brittanica (1969), vol. 18, William Benton, Chicago, Illinios, pp. 570–9Google Scholar
  22. Feller, W. (1968). Introduction to Probability Theory and its Applications, vol. 1, 3rd edn, Wiley, New YorkGoogle Scholar
  23. Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. A, 222, 309–68CrossRefGoogle Scholar
  24. Fisz, M. (1963). Probability Theory and Mathematical Statistics, 3rd edn, Wiley, New YorkGoogle Scholar
  25. Foster, H. A. (1924). Theoretical frequency curves and their application to engineering problems. Trans. Am. Soc. Civ. Eng., 87, 142–203Google Scholar
  26. Gnedenko, B. V. (1968). The Theory of Probability, 4th edn (translated from the Russian by S. D. Seckler), Chelsea, New YorkGoogle Scholar
  27. Golder, E. R., and Settle, J. G. (1976). The Box—Muller method of generating pseudo-random normal deviates. Appl. Statist., 25, 12–20CrossRefGoogle Scholar
  28. Good, I. J. (1973). What are degrees of freedom? Am. Statist., 27, 227–8Google Scholar
  29. Goodrich, R. D. (1927). Straight line plotting for skew frequency distributions. Trans. Am. Soc. Civ. Eng., 91, 1–118Google Scholar
  30. Greenwood, J. A., and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood. Technometrics, 2, 55–65CrossRefGoogle Scholar
  31. Gupta, V. L. (1970). Selection of frequency distribution models. Water Resour. Res., 6, 1193–8CrossRefGoogle Scholar
  32. Hammersley, J. M., and Handscomb, D. C. (1964). Monte Carlo Methods, Methuen, LondonCrossRefGoogle Scholar
  33. Hamming, R. W. (1973). Numerical Methods for Scientists and Engineers, 2nd edn, McGraw-Hill, New YorkGoogle Scholar
  34. Hastings, N. A. J., and Peacock, J. B. (1975). Statistical Distributions, Butterworths, LondonGoogle Scholar
  35. Hawkins, R. H. (1972). Discussion on two-distribution method for flood-frequency analysis. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng., 98 (HY10), 1885–7Google Scholar
  36. Heath, D. F. (1967). Normal or lognormal: approximate distributions. Nature (London), 213, 1159–60CrossRefGoogle Scholar
  37. Hill, I. D., Hill, R., and Holder, R. L. (1976). Fitting Johnson curves by moments, algorithms AS 99. Appl. Statist., 25, 180–9CrossRefGoogle Scholar
  38. Hoadley, A. B. (1968). Use of the Pearson densities for approximating a skew density whose left terminal and first three moments are known. Biometrika, 55, 559–63CrossRefGoogle Scholar
  39. Hull, T. E., and Dobell, A. R. (1962). Random number generators. Soc. Ind. Appl. Math. Rev., 4, 230–54Google Scholar
  40. Johnke, Emde and Lösh (1960). Tables of Higher Functions, 6th edn, McGraw-Hill, New YorkGoogle Scholar
  41. Johnson, D., and Tattersall, K. H. (1971). Hydrological data analysis for water resources problems. J. Water Eng., 25, 181–200Google Scholar
  42. Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36, 149–76CrossRefGoogle Scholar
  43. Johnson, N. L., and Kotz, S. (1970). Continuous Univariate Distributions, vols 1, 2, Houghton Mifflin, Boston, MassachusettsGoogle Scholar
  44. Johnson, N. L. (1972). Continuous Multivariate Distributions, vol. 4, Wiley, New YorkGoogle Scholar
  45. Johnson, N. L., and Leone, F. C. (1977). Statistics and Experimental Design in Engineering and the Physical Sciences, vol. 1, 2nd edn, Wiley, New YorkGoogle Scholar
  46. Kendall, M. G., and Buckland, W. R. (1971). A Dictionary of Statistical Terms, 3rd edn, Haffner, New YorkGoogle Scholar
  47. Kendall, M. G., and Stuart, A. (1973). The Advanced Theory of Statistics, vol. 2, 3rd edn, Griffin, LondonGoogle Scholar
  48. Kendall, M. G. (1977). The Advanced Theory of Statistics, vol. 1, 4th edn, Griffin, LondonGoogle Scholar
  49. Kim, P.J., and Jennrich, R. I. (1973). Tables of the exact sampling distri¬bution of the two-sample Kolmogorov—Smirnov criterion, Dmn > m ≤ n. Selected Tables in Mathematical Statistics, vol. 1 (eds. H. L. Harter and D. B. Owen), American Mathematical Society, Providence, Rhode Island, pp. 79–170Google Scholar
  50. Knuth, D. E. (1969). The Art of Computer Programming, vol. 2, Seminumerical Algorithms, Addison-Wesley, Reading, MassachusettsGoogle Scholar
  51. Kolmogorvo, A. (1933). Sulla determinazione empirica di una Legge di distribuzione. Giornale dell Instituto Italiano degli Attuari, 4, 83–91Google Scholar
  52. Kottegoda, N. T. (1970). Statistical methods of river flow synthesis for water esources assessment. Proc. Inst. Civ. Eng., paper 7339S, suppl. XVIIIGoogle Scholar
  53. Kottegoda, N. T. (1972). Stochastic five daily stream flow model. J. Hydraul. Div., Proc. m. Soc. Civ. Eng., 98 (HY9), 1469–85Google Scholar
  54. Kottegoda, N. T. (1978). Tail behaviour of riverflow probability densities. Proceedings of the International Symposium on Risk and Reliability in Water Resources, Waterloo, Canada, preprintsGoogle Scholar
  55. Kottler, F. (1950). The distribution of particle sizes. J. Franklin Inst., 250, 339–56CrossRefGoogle Scholar
  56. Landwehr, J. M., Matalas, N. L., and Wallis, J. R. (1978). Some comparisons of flood statistics in real and log space. Water Resour. Res., 14, 902–20CrossRefGoogle Scholar
  57. Lewis, P. A. W., Goodman, A. S., and Miller, J. M. (1969). A pseudo-random number generator for the system/360. IBM Syst. J., 8, 136–46CrossRefGoogle Scholar
  58. Lilliefors, H. W. (1967). On the Kolmogorov—Smirnov test for normality with mean and variance unknown. J. Am. Statist. Assoc., 62, 399–402CrossRefGoogle Scholar
  59. Maisel, H., and Gnugnoli, G. (1972). Simulation of Discrete Stochastic Systems, cience Research Associates, Chicago, IllinoisGoogle Scholar
  60. Mann, H. B., and Wald, A. (1942). On the choice of the number of class intervals in the application of the chi square test. Ann. Math. Statist., 13, 306–17CrossRefGoogle Scholar
  61. Markovic, R. D. (1965). Probability functions of best fit to distributions of annual precipitation and runoff. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 8Google Scholar
  62. Marsaglia, G., and Bray, T. A. (1968). One-line random number generators and their use in combinations. Commun. Assoc. Comput. Mach.11, 757–9Google Scholar
  63. Massey, F. J., Jr. (1951). The Kolmogorov—Smirnov test for goodness of fit. J Am. Statist. Assoc., 46, 68–78.CrossRefGoogle Scholar
  64. Matalas, N. C. (1963). Probability distributions of low flows. U.S. Geol. Survey, Prof. Paper, No. 434-AGoogle Scholar
  65. Matalas, N. C., and Wallis, J. R. (1973). Eureka! it fits a Pearson type 3 distribution. Water Resour. Res., 9, 281–9CrossRefGoogle Scholar
  66. Miller, L. H. (1956). Table of percentage points of Kolmogorov Statistics. J. Am. Statist. Assoc., 51, 111–21CrossRefGoogle Scholar
  67. Mood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the Theory of Statistics, McGraw-Hill, New YorkGoogle Scholar
  68. Moran, P. A. P. (1957). The statistical treatment of flood flows. Trans. Am. Geophys. Un., 38, 519–23CrossRefGoogle Scholar
  69. von Neumann, J. (1951). Various techniques used in connection with random digits. Nati Bur. Stand. (U.S.), Appl. Math. Ser., 12, 36–8Google Scholar
  70. Ord, J. K. (1972). Families of Frequency Distributions, Griffin, LondonGoogle Scholar
  71. Page, E. (1977). Approximations to the cumulative normal function and its nverse for use on a pocket calculator. Appl. Statist., 26, 75–6Google Scholar
  72. Pearson, K. (1957). Tables of the Incomplete F-Function, Cambridge University Press, CambridgeGoogle Scholar
  73. Pearson, E. S., and Hartley, H. O. (eds) (1972). Biometrika Tables for Statisticians, vol. 2, Cambridge University Press, CambridgeGoogle Scholar
  74. Ramberg, J. S. (1975). A probability distribution with application to Monte Carlo simulation studies. Statistical Distributions in Scientific Work, vol. 2 (eds C. P. Patil, S. Kotz and J. K. Ord), D. Reidal Publishing Company, Dordrecht, pp. 51–64CrossRefGoogle Scholar
  75. Senne, K. D. (1974). Machine independent Monte Carlo evaluation of the performance of dynamic stochastic systems. J. Stochastics1, 215–38CrossRefGoogle Scholar
  76. Shenton, L. R., and Bowman, K. O. (1972). Further remarks on maximum likelihood estimates for the gamma distribution. Technometrics, 14, 725–33CrossRefGoogle Scholar
  77. Siddall, J. N. (1972). Analytical Decision Making in Engineering Design, Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  78. Slade, J. J., Jr. (1936). An asymptotic probability function. Trans. Am. Soc. Civ. Eng., 101, 35–104Google Scholar
  79. Smimov, N. (1948). Table for estimating the goodness of fit of empirical distributions. Ann. Math. Statist., 19, 279–81CrossRefGoogle Scholar
  80. Snow, R. H. (1968). Algorithm 342: generator of random numbers satisfying the Poisson distribution. Commun. Assoc. Comput. Mach., 11, 819–20Google Scholar
  81. Snyder, W. M. (1972). Fitting of distribution functions by nonlinear least squares, Water Resour. Res., 8, 1423–32CrossRefGoogle Scholar
  82. Sowey, E. R. (1978). A second classified bibliography on random number generating and testing. Int. Statist. Rev., 46, 89–102Google Scholar
  83. Stidd, C. K. (1953). Cube-root-normal distributions. Trans. Am. Geophys. Un., 34, 31–5CrossRefGoogle Scholar
  84. Stidd, C. K. (1970), The nth root normal distribution of precipitation. Water Resour. Res., 6, 1095–103CrossRefGoogle Scholar
  85. Svanidze, G. G. (1974). Mathematical models of run-off for the computation of storage reservoirs. Proceedings of the Warsaw 1971 Symposium on Mathematical Models in Hydrology, vol. 1 International Association of Scientific Hydrology, Paris, pp. 408–13Google Scholar
  86. Tao, P. C., Yevjevich, V., and Kottegoda, N. T. (1976). Distributions of hydrologic independent stochastic components. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 82Google Scholar
  87. Taussky, O., and Todd, J. (1956). Generation and testing of pseudo-random numbers. Symposium on Monte Carlo Methods (ed. H. A. Meyer), Wiley, New York, p. 16Google Scholar
  88. Thom, H. C. S. (1958). A note on the gamma distribution. Mon. Weath. Rev., 86, 117–22CrossRefGoogle Scholar
  89. Tocher, K. D. (1963). The Art of Simulation, Hodder and Stoughton, LondonGoogle Scholar
  90. Tukey, J. W. (1962). The future of data analysis. Ann. Math. Statist., 33, 1–67CrossRefGoogle Scholar
  91. Von Jöhnk, M. D. (1964). Evzeugung von betaverteilten und gammaverteilten Zufallszahlem. Metrika, 8, 5–15CrossRefGoogle Scholar
  92. Weiss, M. S. (1978). Modification of the Kolmogorov—Smirnov statistic for use with correlated data. J. Am. Statist. Assoc., 73, 872–5CrossRefGoogle Scholar
  93. Whittaker, J. (1972). A note on the generation of gamma random variables with non-integral shape parameter. Floods and Droughts, Proceedings of the 2nd International Hydrology Symposium, Colorado State University Press, Fort Collins, ColoradoGoogle Scholar
  94. Wilk, M. B., Gnanadesikan, R., and Huyett, M. J. (1962). Probability plots of the gamma distribution. Technometrics, 4, 1–20CrossRefGoogle Scholar
  95. Williams, C. A. Jr. (1950). On the choice of the number and width of classes for the chi-square test of goodness of fit. J. Am. Statist. Assoc. 45 77–86Google Scholar
  96. Yevjevich, V. (1963). Fluctuations of wet and dry years, part I. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 1Google Scholar
  97. Yevjevich, V. (1972). Probability and Statistics in Hydrology, Water Resources Publications, Fort Collins, ColoradoGoogle Scholar
  98. Young, G. K., and Pisano, W. C. (1968), Operational hydrology using residuals. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng., 94 (HY 4), 909–23Google Scholar

Copyright information

© N. T. Kottegoda 1980

Authors and Affiliations

  • N. T. Kottegoda
    • 1
  1. 1.Department of Civil EngineeringUniversity of BirminghamUK

Personalised recommendations