Analysis of hydrologic time series

  • N. T. Kottegoda


The principal aim of time series analysis is to describe the history of movement in time of some variable such as the rate of flow in a river at a particular site. River flow and other hydrological sequences are characterised by variability and oscillatory behaviour. This highlights the importance of studying time series, the properties of which are of great significance in the planning, designing and operation of water resource systems. The subject is a prerequisite to the stochastic models described in chapters 4 and 5.


Time Series Serial Correlation Discrete Series Spectral Density Function White Noise Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamowski, K. (1971). Spectral density of a river flow time series. J. Hydrol., 14, 43–52CrossRefGoogle Scholar
  2. Andel, J., and Balek, J. (1971). Analysis of periodicity in hydrological sequences. J. Hydrol., 14, 66–82CrossRefGoogle Scholar
  3. Anderson, R. L. (1942). Distribution of the serial correlation coefficient. Ann. Math. Statist., 13, 1–13CrossRefGoogle Scholar
  4. Anderson, T. W. (1971). Analysis of Time Series, Wiley, New YorkGoogle Scholar
  5. Avara, E. P. (1975). Some effects of autocorrelated and crosscorrelated noise on the analysis of variance. Proceedings of the 4th Conference on Probability and Statistic in Atmospheric Sciences, Tallahassee, Florida, 18–21 November 1975, American Meteorological Society, Lancaster, Pennsylvania, preprints, pp. 139–42Google Scholar
  6. Bailey, N. T. J. (1964). The Elements of Stochastic Processes, Wiley, New YorkGoogle Scholar
  7. Barksdale, H. C., and Guffey,H. J. Jr. (1972). An illustration of cross-spectral analysis in marketing. J. Marketing Res., 9, 271–8CrossRefGoogle Scholar
  8. Bartholomew, D. J. (1973). Stochastic Models for Social Processes, 2nd edn, Wiley, New YorkGoogle Scholar
  9. Bartlett, M. S. (1978). An Introduction to Stochastic Processes with Special Reference to Methods and Applications, 3rd edn, Cambridge University Press, CambridgeGoogle Scholar
  10. Bendat, J. S., and Piersol, A. G. (1971). Random Data: Analysis and Measurement Procedures, Wiley, New YorkGoogle Scholar
  11. Beveridge, W. H. (1921). Weather and harvest cycles. Econ. J., 31, 429–52CrossRefGoogle Scholar
  12. Blackman, R. B., and Tukey, J. W. (1958). The Measurement of Power Spectrum from the Point of View of Communication Engineering, Dover Publications, New YorkGoogle Scholar
  13. Bourodimos, E. L., and Oguntuase, A. M. (1974). Cross-spectral analysis of rainfall and runoff for Raritan and Mullica River basins in New Jersey. J. Hydrol., 21, 61–79CrossRefGoogle Scholar
  14. Box, G. E. P., and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control, revised edn, Holden Day, San Francisco, CaliforniaGoogle Scholar
  15. Brier, G. W. (1961). Some statistical aspects of long-term fluctuations in solar and atmospheric phenomena. Ann. N. Y. Acad. Sci., 95, 173–87CrossRefGoogle Scholar
  16. Brillinger, D. R. (1975). Time Series, Data Analysis and Theory, Holt, Rinehart and Winston, New YorkGoogle Scholar
  17. Brown, R. G. (1963). Smoothing, Forecasting and Prediction of Discrete Time Series, Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  18. Buishand, T. A. (1977). Stochastic modelling of daily rainfall sequences.Google Scholar
  19. Mededelingen Landbouwhogeschool Wageningen, Netherlands 77 No. 3.Google Scholar
  20. Bullard, K. L., Yevjevich, V., and Kottegoda, N. T. (1977). Effect of misestimating harmonics in periodic hydrologic parameters. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 88Google Scholar
  21. Buys-Ballot, C. H. D. (1847). Les Changements Périodiques de Température UtrechtGoogle Scholar
  22. Chatfield, C. (1975). The Analysis of Time Series: Theory and Practice, Chapman and Hall, LondonCrossRefGoogle Scholar
  23. Chatfield, C., and Pepper, M. P. G. (1971). Time series analysis: an example from geophysical data. Appl. Statist., 20, 217–38CrossRefGoogle Scholar
  24. Chow, Ven Te, and Kareliotis, S. J. (1970). ‘Analysis of stochastic hydrologic systems.’ Water Resour. Res., 6,1569–82.CrossRefGoogle Scholar
  25. Chow, Ven Te, and Kareliotis, S. J.(1972) Letters. Water Resour. Res., 8, 154–65Google Scholar
  26. Christiansen, J. E. (1967). Indications of changing relationships between precipitation and streamflow with time. Proceedings of the International Conference on Water for Peace, vol. 4, Water Supply Technology, United States Government Printing Office, Washington, D.C., pp. 731–9Google Scholar
  27. Cliff, A. D., and Ord, J. K. (1973). Spatial Autocorrelation, Pion, LondonGoogle Scholar
  28. Cooley, J. W., Lewis, P. A. W., Welch, P. D. (1977). The fast Fourier transform and its application to time series. Statistical Methods for Digital Computers (eds K. Enslein, A. Ralston and H. S. Wilf), Wiley, New YorkGoogle Scholar
  29. Craddock, J. M. (1957). An analysis of the slower temperature variations at Kew Observatory by means of mutually exclusive band pass filters. J. R. Statist. Soc. A, 120, 387–97CrossRefGoogle Scholar
  30. Craddock, J. M. (1965). The analysis of meteorological time series in forecasting. Statistician, 15, 167–90CrossRefGoogle Scholar
  31. Davis, H. T. (1941). The Analysis of Economic Time Series, Principia Press, Bloomington, IndianaGoogle Scholar
  32. Dawdy, D. R. (1972). Discussion on ‘Analysis of stochastic hydrologic systems’ by Ven Te Chow and S. J. Kareliotis. Water Resour. Res., 8, 154–6CrossRefGoogle Scholar
  33. Doob, J. L. (1953). Stochastic Processes, Wiley, New YorkGoogle Scholar
  34. Draper, N. R., and Smith, H. (1966). Applied Regression Analysis, Wiley, New YorkGoogle Scholar
  35. Durbin, J. (1962). Trend elimination by moving-average and variate-difference filters. Bull. Int. Statist. Inst., 39, 131–41Google Scholar
  36. Edge, B. L., and Liu, P. C. (1970). Comparing power spectra computed by Blackman—Tukey and fast Fourier transform. Water Resour. Res., 6, 1601–10CrossRefGoogle Scholar
  37. Fiering, M. B., and Jackson, B. (1971). Synthetic Streamflows, Water Resources Monograph 1, American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  38. Fisher, R. A. (1929). Tests of significance in harmonic analysis. Proc. R. Soc. London A, 125, 54–9CrossRefGoogle Scholar
  39. Gilman, D. L., Fuglister, F. J., and Mitchell, J. M., Jr. (1963). On the power spectrums of ‘red noise’. J. Atmos. Sci., 20, 182–4CrossRefGoogle Scholar
  40. Granger, C. W. J., and Hatanaka, M. (1964). Spectral Analysis of Economic Time Series, Princeton University Press, Princeton, New JerseyGoogle Scholar
  41. Grenander, U., and Rosenblatt, M. (1966). Statistical Analysis of Stationary Time Series, 2nd edn, Wiley, New YorkGoogle Scholar
  42. Gunnerson, C. G. (1966). Optimizing sampling intervals in tidal estuaries. J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 92 (SA2), 103–25Google Scholar
  43. Hannan, E. J. (1970). Multiple Time Series, Wiley, New YorkCrossRefGoogle Scholar
  44. Holloway, J. L., Jr. (1958). Smoothing and filtering of time series and space fields. Adv. Geophys., 4, 351–89CrossRefGoogle Scholar
  45. Jenkins, R. H., and Watts, D. G. (1968). Spectral Analysis and its Applications, Holden Day, San Francisco, CaliforniaGoogle Scholar
  46. Julian, P. R. (1967). Variance spectrum analysis. Water Resour. Res., 3, 831–45CrossRefGoogle Scholar
  47. Karlin, S., and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd edn, Academic Press, New YorkGoogle Scholar
  48. Keeping, E. S. (1967). Distribution-free methods in hydrology. Statistical Methods in Hydrology, Proceedings of the 5th Hydrology Symposium, McGill University, 1966, Queen’s Printer, Ottawa, pp. 211–47Google Scholar
  49. Kendall, M. G. (1976). Time Series, 2nd edn, Griffin, LondonGoogle Scholar
  50. Kendall, M. G., and Buckland, W. R. (1971). A Dictionary of Statistical Terms, 3rd edn, Haffner, New YorkGoogle Scholar
  51. Kendall, M. G., and Stuart, A. (1973). The Advanced Theory by Statistics, vol. 2, 3rd edn, Griffin, LondonGoogle Scholar
  52. Kendall, M. G. (1976). The Advanced Theory of Statistics, vol. 3, 3rd edn, Griffin, LondonGoogle Scholar
  53. Khintchine, A. (1934). Korrelationstheorie der Stationären Stochastichen Prozesse. Mathematische Annalen, 109, 604–15CrossRefGoogle Scholar
  54. Kisiel, C. C. (1969). Time series analysis of hydrologic data. Adv. Hydrosci., 5, 1–119CrossRefGoogle Scholar
  55. Kisiel, C. C., and Duckstein, L. (1974). Time and frequency domain identification of a casual bivariate stochastic process. Proceedings of the 1971 Warsaw Symposium on Mathematical Models in Hydrology, Warsaw, vol. 1, International Association of Scientific Hydrology, Paris, pp. 364–71Google Scholar
  56. Koopmans, L. H. (1974). The Spectral Analysis of Time Series, Academic Press, New YorkGoogle Scholar
  57. Kottegoda, N. T. (1970). Statistical methods of river flow synthesis for water resources Assessment. Proc. Inst. Civ. Eng., paper 7339S, suppl. XVIIIGoogle Scholar
  58. Kottegoda, N. T., and Yevejevich, V. (1977). Preservation of correlation in generated hydrologic samples through two-station models. J. Hydrol., 33, 99–121CrossRefGoogle Scholar
  59. Lee, Y. W. (1960). Statistical Theory of Communications, Wiley, New YorkGoogle Scholar
  60. Lomnicki, Z. A., and Zaremba, S. R. (1957). On estimating the spectral density function of a stochastic process. J. R. Statist. Soc. B, 19, 13–37Google Scholar
  61. Moore, H. L. (1914). Economic Cycles: Their Law and Cause, Macmillan, New YorkGoogle Scholar
  62. Natural Environmental Research Council (1975). Flood Studies Report, Natural Environmental Research Council, LondonGoogle Scholar
  63. Otnes, R. K., and Enochson, L. (1972). Digital Time Series Analysis, Wiley, New YorkGoogle Scholar
  64. Panofsky, H. A., and Brier, G. W. (1958). Some Applications of Statistics to Meteorology, Mineral Industries Extension Services, Pennsylvania State University, University Park, PennsylvaniaGoogle Scholar
  65. Papoulis, A. (1965). Probability, Random Variables and Stochastic Processes, McGraw-Hill, New YorkGoogle Scholar
  66. Parzen, E. (1961). Mathematical considerations in the estimation of spectra. Technometrics, 3, 167–90CrossRefGoogle Scholar
  67. Parzen, E. (1962). Stochastic Processes, Holden Day, San Francisco, CaliforniaGoogle Scholar
  68. Quimpo, R. G. (1967). Stochastic model of daily river flow sequences. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 18Google Scholar
  69. Quimpo, R. G. (1968). Autocorrelations and spectral analysis in hydrology. J. Hydraul. Div., Am. Soc. Civ. Eng., 94 (HY2), 363–73. (1969). Discussion closure. J. Hydraul. Div., Am. Soc. Civ. Eng., 95 (HY6), 2148–50Google Scholar
  70. Rodriguez-Iturbe, I. (1967). The application of cross-spectral analysis to hydrologic time series. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 24Google Scholar
  71. Roesner, L. A., and Yevjevich, V. M. (1966). Mathematical models for time series of monthly precipitation and monthly runoff. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 15Google Scholar
  72. Schuster, A. (1898). On the investigation of hidden periodicities. Terr. Magn., 3, 13–41CrossRefGoogle Scholar
  73. Slutzky, E. (1937). The summation of random causes as the source of cyclic processes. Econometrica, 5, 105–46CrossRefGoogle Scholar
  74. Sudler, C. E. (1927). Storage required for the regulation of streamflow. Trans. Am. Soc. Civ. Eng., 91, 622–60Google Scholar
  75. Tukey, J. W. (1965). Data analysis and the frontiers of geophysics. Science, 148, 1283–9CrossRefGoogle Scholar
  76. Wallis, J. R., and Matalas, N. C. (1971). Correlogram analysis revisited. Water Resour. Res., 7, 1448–59CrossRefGoogle Scholar
  77. Wold, H. (1954). A Study in the Analysis of Stationary Time Series, 2nd edn, Almqvist and Wiksell, StockholmGoogle Scholar
  78. Wiener, N. (1930). Generalized harmonic analysis. Acta Mathematica, 55, 117–258CrossRefGoogle Scholar
  79. Yaglom, A. M. (1962). An Introduction to the Theory of Stationary Functions, Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  80. Yevjevich, V. (1963). Fluctuations of wet and dry years, part I. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 1Google Scholar
  81. Yevjevich, V. (1972a). Structural analysis of hydrologic time series. Colo. St. Univ., Fort Collins, Hydrol. Papers, No. 56Google Scholar
  82. Yevjevich, V. (1972b). Stochastic Processes in Hydrology, Water Resources Publications, Fort Collins, ColoradoGoogle Scholar
  83. Yevjevich, V. (1974). Determinism and stochasticity in hydrology. J. Hydrol., 22, 225–38CrossRefGoogle Scholar
  84. Yule, G. U. (1921). On the time-correlation problem, with especial reference to the incorrect variate-difference correlation method (with discussion), J. R. Statist. Soc., 84, 497–537CrossRefGoogle Scholar

Copyright information

© N. T. Kottegoda 1980

Authors and Affiliations

  • N. T. Kottegoda
    • 1
  1. 1.Department of Civil EngineeringUniversity of BirminghamUK

Personalised recommendations