Advertisement

Application of deuterium labelling in studies of the biosynthesis and metabolism of prostaglandin F in man

  • A. R. Brash
  • M. E. Conolly
  • G. H. Draffan
  • P. Tippett
  • T. A. Baillie

Abstract

Quantitative determination of the major urinary metabolites of the E and F series prostaglandins represents a valuable approach to the study of prostaglandin biosynthesis in man. The primary piostaglandins, such as prostaglandin F (PGF), are first metabolised to their biologically inactive 15-keto-13, 14-dihydro derivatives. These, in turn, are converted into several more polar derivatives which are excreted in the urine. The main end-product in the metabolism of PGF is 5α, 7α-dihydroxy-11-ketotetranor-prostane-1, 16-dioic acid (referred to below as PGF-M), while an analogous C16 dioic acid is formed from PGE2 (Figure 26.1).

Keywords

Methyl Ester Peak Expiratory Flow Rate Endogenous Metabolite Prostaglandin Biosynthesis Deuterium Labelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bito, L. Z. (1976). Prostaglandins, 12, 639CrossRefGoogle Scholar
  2. Brash, A. R., Baillie, T. A., Clare, R. A. and Draffan, G. H. (1976). Biochem. Med., 16, 77CrossRefGoogle Scholar
  3. Brash, A. R. and Jones, R. L. (1974). Prostaglandins, 5, 441CrossRefGoogle Scholar
  4. Granström, E. and Kindahl, H. (1976). Advances in Prostaglandin and Thromboxane Research, Vol. 1 (ed. B. Samuelsson and R. Paoletti), Raven Press, New York, p. 81Google Scholar
  5. Granström, E. and Samuelsson, B. (1971). J. Biol. Chem., 246, 5254Google Scholar
  6. Greeley, R. H. (1974). J. Chromatogr., 88, 229CrossRefGoogle Scholar
  7. Gréen, K., Granström, E., Samuelsson, B. and Axén, U. (1973). Anal. Biochem., 54, 434CrossRefGoogle Scholar
  8. Gréen, K., Hedqvist, P. and Svanborg, N. (1974). Lancet, 2, 1419CrossRefGoogle Scholar
  9. Hamberg, M. and Samuelsson, B. (1972). J. Biol. Chem., 247, 3495Google Scholar
  10. Hamberg, M. (1973a). Anal. Biochem., 55, 368CrossRefGoogle Scholar
  11. Hamberg, M. (1973b). Biochem. Biophys. Res. Commun., 49, 720CrossRefGoogle Scholar
  12. Horton, E. W. (1969). Physiol. Rev., 49, 122Google Scholar
  13. Nidy, E. G. and Johnson, R. A. (1975). J. Org. Chem., 40, 1415CrossRefGoogle Scholar
  14. Nyström, E. and Sjövall, J. (1973). Anal Lett., 6, 155CrossRefGoogle Scholar
  15. Ohki, S., Nishigaki, Y., Imaki, K., Kurono, M., Hirata, F., Hanyu, T. and Nakazawa, N. (1976). Prostaglandins, 12, 181CrossRefGoogle Scholar
  16. Pace-Asciak, C. and Cole, S. (1975). Experientia, 31, 143CrossRefGoogle Scholar
  17. Palmér, L., Bertilsson, L., Alvan, G., Orme, M., Sjöqvist, E. and Holmstedt, B. (1974). Prostaglandin Synthetase Inhibitors (ed. H. J. Robinson and J. R. Vane), Raven Press, New York, p. 91Google Scholar
  18. Pike, J, E., Lincoln, F. H. and Schneider, W. P. (1969). J. Org. Chem., 34, 3552CrossRefGoogle Scholar
  19. Piper, P. J. and Walker, J. L. (1973). Brit. J. Pharmacol., 47, 291CrossRefGoogle Scholar
  20. Skellern, G. C. and Salole, E. G. (1975). J. Chromatogr., 114, 483CrossRefGoogle Scholar
  21. Vane, J. R. (1974). Prostaglandin Synthetase Inhibitors (ed. H. J. Robinson and J. R. Vane), Raven Press, New York, p. 155Google Scholar

Copyright information

© The Contributors 1978

Authors and Affiliations

  • A. R. Brash
    • 1
  • M. E. Conolly
    • 1
  • G. H. Draffan
    • 1
  • P. Tippett
    • 1
  • T. A. Baillie
    • 1
  1. 1.Department of Clinical PharmacologyRoyal Postgraduate Medical SchoolLondonUK

Personalised recommendations