Kinetic aspects of structure — activity relationships in the carbonic anhydrase — sulphonamide system

  • R. W. King
Part of the Biological Council book series (BCSDA)


The binding of sulphonamide inhibitors to the enzyme carbonic anhydrase (E.C. is a useful model system for the interaction of drugs with receptors. There exists a very wide range of chemically related specific inhibitors, all of those with high affinity (Ka>105 M−1) possessing the following properties. The sulphonamide group is unsubstituted on the nitrogen atom and is directly linked to an aromatic nucleus. This nucleus may be homocyclic, of the benzene or naphthalene type, or it maybe heterocyclic, as in the case of the well-known drugs acetazolamide and chlorothiazide. The enzyme itself is easily purified in large quantities from mammalian blood and has the useful qualities of being extremely stable to a wide variety of storage and experimental conditions. The physical properties of the enzyme have been closely studied and an X-ray structure is available. Most of the following studies have been carried out using the C isoenzyme of human carbonic anhydrase(HCA-C).


Carbonic Anhydrase Binding Constant Affinity Constant Dissociation Rate Constant Kinetic Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberty, R. A. and Hammes, G. G. (1958). J. Phys. Chem., 62, 154CrossRefGoogle Scholar
  2. Burgen, A. S. V. (1966). J. Pharm. Pharmacol., 18, 137PubMedCrossRefGoogle Scholar
  3. Coleman, J. E. (1967). Nature (London), 214, 193CrossRefGoogle Scholar
  4. Fujita, T. and Hansch, C. (1967). J. Med. Chem., 10, 991PubMedCrossRefGoogle Scholar
  5. Haselkorn, D., Friedman, S., Girol, D. and Pecht, I. (1974). Biochemistry, 13, 2210PubMedCrossRefGoogle Scholar
  6. Kakeya, N., Aoki, M., Kamada, A. and Yata, N. (1969). Chem. Pharm. Bull., 17 (5), 1010PubMedCrossRefGoogle Scholar
  7. Kernohan, J. C. (1966). Biochim. Biophys. Acta, 118, 405PubMedCrossRefGoogle Scholar
  8. King, R. W. and Burgen, A. S. V. (1970). Biochim. Biophys. Acta, 207, 278PubMedCrossRefGoogle Scholar
  9. King, R. W. and Burgen, A. S. V. (1976). Proc. R. Soc. London, 193, 107CrossRefGoogle Scholar
  10. King, R. W. and Maren, T. H. (1974). Mol. Pharmacol., 10, 344PubMedGoogle Scholar
  11. Kumar, K., King, R. W. and Carey, P. R. (1974). FEBS Lett., 48, 283PubMedCrossRefGoogle Scholar
  12. Kumar, K., King, R. W. and Carey, P. R. (1976). Biochemistry, 15, 2195PubMedCrossRefGoogle Scholar
  13. Lanir, A. and Navon, G. (1971). Biochemistry, 10, 1024PubMedCrossRefGoogle Scholar
  14. Lanir, A. and Navon, G. (1972). Biochemistry, 11, 3536PubMedCrossRefGoogle Scholar
  15. Lindskog, S. (1963). J. Biol. Chem., 238, 945PubMedGoogle Scholar
  16. Lindskog, S. and Nyman, P. O. (1964). Biochim. Biophys. Acta, 85, 462PubMedGoogle Scholar
  17. Lindskog, S. and Thorslund, A. (1968). Eur. J. Biochem., 3, 453PubMedCrossRefGoogle Scholar
  18. Mann, T. and Keilin, D. (1940). Nature (London), 146, 164CrossRefGoogle Scholar
  19. Miller, W. H., Dessert, A. M. and Roblin, R. O. (1950). J. Am. Chem. Soc., 72, 4893CrossRefGoogle Scholar
  20. Olander, J., Bosen, S. F. and Kaiser, E. T. (1973). J. Am. Chem. Soc., 95, 1616PubMedCrossRefGoogle Scholar
  21. Taylor, P. W., King, R. W. and Burgen, A. S. V. (1970a). Biochemistry, 9, 2638PubMedCrossRefGoogle Scholar
  22. Taylor, P. W., King, R. W. and Burgen, A. S. V. (1970b). Biochemistry, 9, 3894PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Biology Endowment Trust Fund 1977

Authors and Affiliations

  • R. W. King
    • 1
  1. 1.Division of Molecular PharmacologyNational Institute for Medical ResearchLondonUK

Personalised recommendations