The mechanism of cytochrome P450-catalysed drug oxidations

  • V. Ullrich
Part of the Biological Council book series (BCSDA)


Most compounds involved in the metabolism of cells, organs and organisms are hydrophilic in nature, possessing polar groups capable of undergoing a variety of metabolic reactions. Lipophilic molecules, like steroids or the fat-soluble vitamins, are in the minority. These latter compounds consist, in substantial part, of aromatic or alicyclic rings and/or aliphatic side-chains. These hydrocarbon groups are metabolically rather inert and in fact only one group of enzymes, the mono-oxygenases, can attack aromatic or aliphatic C—H bonds. Monooxygenases use molecular oxygen and two electrons from an external donor to introduce an oxygen atom into organic substrates according to the equation (Mason, 1957):
where RH represents substrate and DH2 represents reduced electron donor. Such enzymes play an important role in the formation and transformation of steroids, bile acids, amino acids or vitamins (Ullrich, 1972). Micro-organisms using lipophilic compounds as the sole carbon source rely on the presence of mono-oxygenases for the initial oxidation of the substrate to alcohols, which can be further oxidised with concomitant production of chemical energy.


Substrate Complex Lipophilic Compound Cumene Hydroperoxide Oxygen Atom Transfer Steroid Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvares, A. P., Leigh, S., Kappas, A., Levin, W. and Conney, A. H. (1973). Drug Metab. Disposition, 1, 386Google Scholar
  2. Brodie, B. B., Gillette, J. R. and LaDu, B. N. (1958). Ann. Rev. Biochem., 27, 427PubMedCrossRefGoogle Scholar
  3. Conney, A. H., Levin, W., Jacobson, M., Kuntzman, R., Cooper, D. Y. and Rosenthal, O. (1969). Microsomes and Drug Oxidations (ed. Gillette, Conney, Cosmides, Estabrook, Fouts and Mannering), Academic Press, New York, p. 279CrossRefGoogle Scholar
  4. Diehl, H., Schädelin, J. and Ullrich, V. (1970). Hoppe-Seyler’s Z. Physiol. Chem., 351, 1359PubMedCrossRefGoogle Scholar
  5. Estabrook, R. W., Cooper, D. Y. and Rosenthal, O. (1963). Biochem. Z., 338, 741PubMedGoogle Scholar
  6. Estabrook, R. W., Hildebrandt, A. G., Baron, J., Netter, K. J. and Leibman, K. (1971). Biochem. Biophys. Res. Commun., 42, 132PubMedCrossRefGoogle Scholar
  7. Frommer, U. and Ullrich, V. (1971). Z. Naturforschg., 26b, 322Google Scholar
  8. Frommer, U., Ullrich, V. and Staudinger, Hj. (1970). Hoppe -Seyler’s Z. Physiol. Chem., 351, 903PubMedCrossRefGoogle Scholar
  9. Frommer, U., Ullrich, V., Staudinger, Hj. and Orrenius, S. (1972). Biochem. Biophys. Acta, 280, 487PubMedCrossRefGoogle Scholar
  10. Gigon, P. L., Gram, T. E. and Gillette, J. R. (1969). Molec. Pharmacol., 5, 109Google Scholar
  11. Griffin, B. W. and Peterson, J. A. (1975). J. Biol. Chem., 250, 6445PubMedGoogle Scholar
  12. Gunsalus, I. C. (1970). Conference on cytochrome P450, PhiladelphiaGoogle Scholar
  13. Haugen, D. A., van der Hoeven, T. A. and Coon, M. J. (1975). J. Biol. Chem., 250, 3567PubMedGoogle Scholar
  14. Hrycay, E., Gustafsson, J. A., Ingelmann-Sundberg, M. and Ernster, L. (1975). Biochem. Biophys. Res. Commun., 66, 357CrossRefGoogle Scholar
  15. Ishimura, Y., Ullrich, V. and Peterson, J. A. (1971). Biochem. Biophys. Res. Commun., 42, 140PubMedCrossRefGoogle Scholar
  16. Iyanagi, T. and Mason, H. S. (1973). Biochemistry, 12, 2297PubMedCrossRefGoogle Scholar
  17. Jerina, D., Daly, J. W., Landis, W., Witkop, B. and Udenfriend, S. (1968). J. Amer. Chem. Soc., 90, 6523CrossRefGoogle Scholar
  18. Koch, St., Tang, S. C., Holm, R. H., Frankel, R. B. and Ibers, J. A. (1975). J. Amer. Chem. Soc., 97, 916CrossRefGoogle Scholar
  19. Kuntzman, R. (1969). Ann. Rev. Pharmacol., 9, 21PubMedCrossRefGoogle Scholar
  20. Lehrmann, Ch., Ullrich, V. and Rummel, W. (1973). Naunyn-Schmiedeberg’s Arch. Pharmacol., 276, 89PubMedCrossRefGoogle Scholar
  21. Lichtenberger, F., Nastainczyk, W. and Ullrich, V. Biochem. Biophys. Res. Commun., 70, 939Google Scholar
  22. Lu, A. Y. H., Junk, K. W. and Coon, M. J. (1969). J. Biol. Chem., 244, 3714PubMedGoogle Scholar
  23. Mannering, G. J., Kuwahara, S. and Omura, T. (1974). Biochem. Biophys. Res. Commun., 57, 476PubMedCrossRefGoogle Scholar
  24. Mason, H. S. (1957). Adv. Enzymol., 19, 79Google Scholar
  25. Morimoto, T., Matsuura, S., Sasaki, S., Tashiro, Y. and Omura, T. (1976). J. Cell. Biol., 68, 189PubMedCrossRefGoogle Scholar
  26. Omura, T. and Sato, R. (1964). J. Biol. Chem. 239, 2370PubMedGoogle Scholar
  27. Pedersen, M. G., Hershberger, W. K. and Juchau, M. R. (1974). Bull. Environment. Contam. Toxicol., 12, 481CrossRefGoogle Scholar
  28. Peisach, J. and Blumberg, W. E. (1970). Proc. Nat. Acad. Sci. USA, 67, 172PubMedPubMedCentralCrossRefGoogle Scholar
  29. Rahimtula, A. D. and O’Brien, P. J. (1974). Biochem. Biophys. Res. Commun., 60, 440PubMedCrossRefGoogle Scholar
  30. Remmer, H., Schenkman, J. B., Estabrook, R. W., Sasame, H. A., Gillette, J. R., Cooper, D. Y., Narasimhulu, S. and Rosenthal, O. (1966). Molec. Pharmacol., 2, 187Google Scholar
  31. Schenkman, J. B., Remmer, H. and Estabrook, R. W. (1967). Molec. Pharmacol., 3, 113Google Scholar
  32. Staudt, H., Lichtenberger, F. and Ullrich, V. (1974). Eur. J. Biochem. 46, 99PubMedCrossRefGoogle Scholar
  33. Strobel, H. W., Lu, A. Y. H., Heidema, J. and Coon, M. J. (1970). J. Biol. Chem., 245, 4851PubMedGoogle Scholar
  34. Ullrich, V. (1968). Hoppe-Seyler’sZ. Physiol. Chem., 350, 357CrossRefGoogle Scholar
  35. Ullrich, V. (1972). Angew. Chem. (Int. Ed.). 11, 701CrossRefGoogle Scholar
  36. Ullrich, V. and Staudinger, Hj. (1968). Biochemie des Sauerstoffs (ed. Hj. Staudinger and B. Hess), Springer, BerlinGoogle Scholar
  37. Ullrich, V. and Weber P. (1972). Hoppe -Seyler’s Z. Physiol. Chem., 353, 1171PubMedCrossRefGoogle Scholar
  38. Ullrich, V., Weber, P. and Wollenberg, P. (1975). Biochem. Biophys. Res. Commun., 64, 808PubMedCrossRefGoogle Scholar
  39. Ullrich, V., Wolf, J., Amadori, E. and Staudinger, Hj. (1967). Hoppe-Seyler’s Z. Physiol. Chem., 349, 85CrossRefGoogle Scholar
  40. Waterfall, J. F. and Sims, P. (1973). Biochem. Pharmacol., 22, 2469PubMedCrossRefGoogle Scholar
  41. Waterman, M. R. and Mason, M. S. (1970). Biochem. Biophys. Res. Commun., 39, 450PubMedCrossRefGoogle Scholar
  42. Waterman, M. R., Ullrich, V. and Estabrook, R. W. (1973). Arch. Biochem. Biophys., 155, 355PubMedCrossRefGoogle Scholar
  43. Wattenberg, L. W. and Leong, J. L. (1965). Fed. Proc., 24, 494Google Scholar
  44. Wattenberg, L. W., Leong, J. L. and Strand, P. J. (1962). Cancer Res., 22, 1120PubMedGoogle Scholar
  45. Welton, A. F. and Aust, S. D. (1974). Biochem. Biophys. Res. Commun., 56, 898PubMedCrossRefGoogle Scholar
  46. Wilson, G. S., Tsibris, J. C. M. and Gunsalus, I. C. (1973). J. Biol. Chem., 248, 6059PubMedGoogle Scholar

Copyright information

© Institute of Biology Endowment Trust Fund 1977

Authors and Affiliations

  • V. Ullrich
    • 1
  1. 1.Department of Physiological ChemistryUniversity of the SaarlandHomburg-SaarGerman Federal Republic

Personalised recommendations