Advertisement

The acute phase plasma proteins

  • A. H. Gordon

Abstract

During the last four years increasing attention has been given to those plasma proteins which increase or decrease in concentration after trauma or during acute infections. As a result of such studies it has become apparent that additions must be made to the category of those which increase in concentration, usually referred to as ‘acute phase proteins’, or ‘acute phase reactants’ (APRs). Recent data on APRs have been summarised by Koj1. Thus information is now available that certain proteins present in plasma after injury which on injection into rats have anti-inflammatory effects should be classified as APRs (table 30.1). Similarly, kininogen, kininogenase, angiotensinogen2 and those constituents of complement which are responsible for reactive lysis must also be considered to be APRs. Greatly increased concentrations of kininogen and kininogenase have recently been detected in the blood of rats after injury3. As shown in figure 30.1, the kininogen and kininogenase concentrations were found to be at a maximum after 2 days, as is typical of many other APRs.

Keywords

Plasma Protein Acute Phase Protein Acute Phase Response Acute Phase Reactant Liver Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koj, A. (1975). Acute phase reactants. In Plasma Proteins, Allison, ed. Plenum, London, p. 73Google Scholar
  2. 2.
    Nasjletti, A. and Masson, G. M. C. Studies on angiotensinogen formation in a liver perfusion system. Circulation Research, 31, Suppl. 2, (1972), 187Google Scholar
  3. 3.
    Borges, D. R. and Gordon, A. H. (1975). Kininogen and kininogenase synthesis by the livers of normal and injured rats. J. Pharm. and Pharmacol., in press.Google Scholar
  4. 4.
    Sell, S. and Wepsic, H. T. (1974). In The Liver, the Molecular Biology of its diseases. F. Becker, ed., Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Gordon, A. H. (1970). The effects of trauma and partial hepactectomy on the rates of synthesis of plasma proteins by the liver. In Plasma Protein Metabolism, M. A. Rothschild and T. Waldmann, eds., Academic Press, New York, p. 351Google Scholar
  6. 6.
    Palmiter, R. D. Regulation of protein synthesis in chick oviduct. J. Biol. Chem., 247 (1973), 6770Google Scholar
  7. 7.
    Thompson, W. L., Pekarek, R. S., Powanda, M. C. and Wannemaker, Jr. R. W. LEM induced alterations in hepatic RNA synthesis—possible regulatory mechanism for synthesis of acute phase serum globulins. Fed. Proc., 33(3), (1974), p. 696, Abstract 2747Google Scholar
  8. 8.
    Kampschmidt, R. F., Pulliam, L. A. and Upchurch, H. F. Sources of leucocytic endogenous mediator in the rat. Pr. Soc. Exp. Biol. and Med., 144 (1973), 882CrossRefGoogle Scholar
  9. 9.
    Kampschmidt, R. F., Upchurch, H. F., Eddington, C. L. and Pulliam, L. A. Multiple biological activities of a partially purified leucocytic endogenous mediator. Am. J. Physiol., 224 (1973), 530Google Scholar
  10. 10.
    Kampschmidt, R. F. and Upchurch, H. F. Effect of leucocytic endogenous mediator on plasma fibrinogen and haptoglobin. Proc. Soc. Exp. Biol. and Med., 146 (1974), 904CrossRefGoogle Scholar
  11. 11.
    Tavill, A. S., East, A. G., Black, E. G., Nadkasni, D. and Hoffenberg, R. (1973). Regulatory factors in the synthesis of plasma proteins. In CIBA Foundation Symposia Protein Turnover, 9 (new series), G. E. W. Wolstenholme and M. O’Connor, eds., Elsevier, Amsterdam, p. 155Google Scholar
  12. 12.
    Tavill, A. S. and Kershenobich, D. (1972). Regulation of transferring synthesis. In Protides of the Biological Fluids, Proc. 19th Congress, H. Peeters, ed., p. 489Google Scholar
  13. 13.
    Loh, T. T. and Juggi, J. S. Tissue iron in acute and chronic liver damage from carbon tetrachloride. Austr. J. Exp. Biol. and Med. Sci., 49 (1971), 493CrossRefGoogle Scholar
  14. 14.
    Mutschier, L. E. and Gordon, A. H. Plasma protein synthesis by the isolated perfused regenerating rat liver. Biochim. Biophys. Acta, 130 (1966), 486CrossRefGoogle Scholar
  15. 15.
    Mancini, G., Carbonara, A. O. and Heremans, J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochem., 2 (1965), 235CrossRefGoogle Scholar
  16. 16.
    O’Shea, M. J., Kershenobich, D. and Tavill, A. S. Effects of inflammation on iron and transferrin metabolism. Brit. J. Haem., 25 (1973), 707CrossRefGoogle Scholar
  17. 17.
    Gordon, A. H. and Darcy, D. A. Production of α1-globulins by the perfused rat liver. Brit. J. Exp. Path., 48 (1967), 81Google Scholar
  18. 18.
    Jarnum, S. and Lassen, N. A. Albumin and transferrin metabolism in infectious and toxic diseases. Scand J. Clin. Lab. Invest., 13 (1961), 357CrossRefGoogle Scholar
  19. 19.
    Darcy, D. A. Polymorphonuclear cell fractions which stimulate increase of an acute phase protein in the rat. Brit. J. Exp. Path., 49 (1968), 525Google Scholar
  20. 20.
    Eddington, C. L., Upchurch, H. F. and Kampschmidt, R. F. Effect of extracts from rabbit leucocytes on levels of acute phase globulins in rat serum. Proc. Soc. Ex. Biol. and Med., 136 (1971), 159CrossRefGoogle Scholar
  21. 21.
    Darcy, D. A. Granuloma weight and the α1-acute phase protein response in rats injected with turpentine. Brit. J. Exp. Path., 51 (1970), 59Google Scholar
  22. 22.
    Elson, C. J. and Weir, D. M. Development of anti-tissue antibodies in rats. Clin. and Exp. Immunol., 4 (1969), 241Google Scholar
  23. 23.
    Weissmann, G., Zurier, R. B., Spieler, P. J. and Goldstein, I. M. Mechanisms of lysosomal enzyme release from leucocytes exposed to immune complexes and other particles. J. Exp. Med., 134 (1971), 149AGoogle Scholar
  24. 24.
    Cardella, C. J., Davies, P. and Allison, A. C. Immune complexes induce selective release of lysosomal hydrolases from macrophages. Nature, 247 (1974), 46CrossRefGoogle Scholar
  25. 25.
    Willoughby, D. A., Coote, E. and Turk, D. A. Complement in acute inflammation. J. Path., 97 (1969), 295CrossRefGoogle Scholar
  26. 26.
    Santos-Buch, C. A. and Treadwell, P. E. Disruption of Kupffer cells during systemic anaphylaxis in the mouse. Am. J. Path., 51 (1967), 505Google Scholar
  27. 27.
    Kampschmidt, R. F. and Upchurch, H. F. Lowering of plasma iron concentration in the rat with leucocytic extracts. Am. J. Physiol., 216 (1969), 1287Google Scholar
  28. 28.
    Pekarek, R. S., Powanda, M. C. and Wannemacher, Jr. R. W. The effect of leucocyte endogenous mediator (LEM) on serum copper and ceruloplasmin concentrations in the rat. Pr. Soc. Exp. Biol. and Med., 141 (1972), 1029CrossRefGoogle Scholar
  29. 29.
    Minchin Clarke, H. G. and Freeman, T. Quantitative immunoelectrophoresis of human serum proteins. Clin. Sci., 35 (1968), 403Google Scholar
  30. 30.
    Ganrot, K. Plasma protein pattern in acute infectious disease. Scand. J. Clin. Lab. Invest., 34 (1974), 75CrossRefGoogle Scholar
  31. 31.
    Elson, L. A., Betts, T. E. and Darcy, D. A. α1-antitrypsin in cigarette smokers. Supp. to Excerpta Medica. Characterisation of Human Tumours. Int. Cong. Series, 321 (1974), 151Google Scholar
  32. 32.
    Auerbach, O., Cuyler Hammond, E., Kirman, D. and Garfinkel, L. Emphysema produced in dogs by cigarette smoking. J. Am. Med. Assoc., 199 (1967), 241CrossRefGoogle Scholar
  33. 33.
    Auerbach, O., Cuyler Hammond, E., Garfinkel, L. Benante, C. Relation of smoking and age to emphysema. New Eng. J. Med., 286 (1972), 853CrossRefGoogle Scholar
  34. 34.
    Hornung, M. and Arquembourg, R. C. β1c-globulin, an ‘acute phase’ serum reactant of human serum. J. Immunol., 94 (1965), 307Google Scholar
  35. 35.
    Alper, C. A. (1970) Regulation and metabolism of the third component of complement (C3). In Plasma Protein Metabolism, M. A. Rothschild and T. Waldmann, eds., Academic Press, New York, p. 393Google Scholar
  36. 36.
    Kushner, I., Edgington, T. S., Trimble, C., Lieni, H. H. and Muller Eberhard, U. Plasma hemopexin homeostasis during the acute phase response. J. Lab. Clin. Med., 80 (1972), 18Google Scholar
  37. 37.
    Hartveit, F., Børve, W. and Thunold, S. Serum complement levels and response to turpentine inflammation in mice. Acta Path. Microbiol. Scand., Sect. A. Suppl. 236 (1973), 54Google Scholar
  38. 38.
    Thompson, R. A. and Rowe, D. S. Reactive haemolysis—a distinctive form of red cell lysis. Immunology, 14 (1968), 745Google Scholar
  39. 39.
    Billingham, M. E. J., Gordon, A. H. and Robinson, B. V. The role of the liver in inflammation. Nature New Biology 231 (1971), 26CrossRefGoogle Scholar
  40. 40.
    Billingham, M. E.J. and Robinson, B. V. Separation of irritancy from the anti-inflammatory component of inflammatory exudate. Br. J. Pharmac., 44 (1972), 317CrossRefGoogle Scholar
  41. 41.
    Van Gool, J., Schreuder, J. and Ladiger, N. C. J. J. Inhibitory effect of foetal α2-globulin, an acute phase protein, on carrageenin oedema in the rat. J. Path., 112 (1974), 245CrossRefGoogle Scholar
  42. 42.
    Persellin, R. H., Vance, S. E. and Peery, A. Effect of pregnancy serum on experimental inflammation. Brit. J. Exp. Path., 55 (1974), 26Google Scholar
  43. 43.
    Lachman, P. J. and Thompson, R. A. Reactive lysis: the complement mediated lysis of unsensitised cells. J. Exp. Med., 131 (1970), 643CrossRefGoogle Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • A. H. Gordon

There are no affiliations available

Personalised recommendations