Advertisement

Albumin transcapillary escape rate as an approach to microvascular physiology in health and disease

  • N. Rossing
  • H.-H. Parving
  • N. A. Lassen

Abstract

Kinetic studies with labelled proteins have been concerned mostly with measurements of metabolic rates and the distribution of plasma proteins between the intravascular and extravascular space. Such studies have contributed considerably to our realisation of the fact that from the synthesis to the disappearance from the body these proteins circulate at individual rates between plasma and interstitial fluid. Much time and effort have been devoted to kinetic models to see how many pools, or rather how many separate rates of exchange between intravascular and extravascular compartments can be distinguished for one individual protein. Since the animal experiments of the Wasserman and Mayerson group1 – 5 there have been few investigations into the nature of the transcapillary escape of endogenous macromolecules and the pathophysiological changes hereof in vascular disease. Most information on the microvascular permeability has been extracted from studies employing small tracer molecules or dextrans.

Keywords

Essential Hypertension Plasma Volume Acute Hypertension Extravascular Compartment Fractional Catabolic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wasserman, K. and Mayerson, H. S. Exchange of albumin between plasma and lymph. Am. J. Physiol., 165 (1951), 15–26Google Scholar
  2. 2.
    Wasserman, K. and Mayerson, H. S. Dynamics of lymph and plasma protein exchange. Cardiologia (Basel) 21 (1952), 296CrossRefGoogle Scholar
  3. 3.
    Wasserman, K., Loeb, L. and Mayerson, H. S. Capillary permeability to macromolecules. Circulat. Res., III (1955), 594CrossRefGoogle Scholar
  4. 4.
    Shirley, H. H., Wolfram, C. G., Wasserman, K. and Mayerson, H. S. Capillary permeability to macromolecules: Stretched pore phenomenon. Am. J. Physiol., 190 (1957), 189–193Google Scholar
  5. 5.
    Mayerson, H. S., Wolfram, C. G., Shirley, H. H. and Wasserman, K. Regional differences in capillary permeability. Am. J. Physiol., 198 (1960), 155–160Google Scholar
  6. 6.
    Parving, H.-H. and Gyntelberg, F. Transcapillary escape rate of albumin and plasma volume in essential hypertension. Circulat. Res., 33 (1973), 643CrossRefGoogle Scholar
  7. 7.
    Parving, H.-H. and Gyntelberg, F.. Albumin transcapillary escape rate and plasma volume during long-term beta-adrenergic blockade in essential hypertension. Scand. J. Clin. Lab. Invest., 32 (1973), 105–110CrossRefGoogle Scholar
  8. 8.
    Parving, H.-H. and Rossing, N. Simultaneous determination of the transcapillary escape rate of albumin and IgG in normal and long-term juvenile diabetic subjects. Scand. J. Clin. Lab. Invest., 32 (1973), 239–244CrossRefGoogle Scholar
  9. 9.
    Parving, H.-H., Nielsen, S. L. and Lassen, N. A. Increased transcapillary escape rate of albumin, IgG and IgM during angiotensin II induced hypertension in man. Scand. J. Clin. Lab. Invest., 34 (1974), 111–118CrossRefGoogle Scholar
  10. 10.
    Lassen, N. A., Parving, H.-H. and Rossing, N. Editorial. Filtration as the main mechanism of overall transcapillary protein escape from the plasma. Microvascular Res., 7 (1974), i–ivCrossRefGoogle Scholar
  11. 11.
    Lendrum, A. C. The hypertensive diabetic kidney as a model of so called collagen diseases. Canad. Med. Ass. J., 88 (1963), 442–452Google Scholar
  12. 12.
    Pappenheimer, J. R., Renkin, E. M. and Cornoero, L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am. J. Physiol., 167 (1951), 13–46Google Scholar
  13. 13.
    Vaerman, J.-P. and Heremans, J. F. Origin and molecular size of immunoglobulin-A in the mesenteric lymph of the dog. Immunology, 18 (1970), 27–38Google Scholar
  14. 14.
    Pietra, C. G., Szidan, J. P., Leventhal, M. M. and Fishman, A. P. Hemoglobin as a tracer in hemodynamic pulmonary edema. Science, 166 (1969), 1643–1646CrossRefGoogle Scholar
  15. 15.
    Goldby, F. S. and Beilin, L. J. How an acute rise in arterial pressure damages arterioles. Cardiovascular Res. 6 (1972), 569–584CrossRefGoogle Scholar
  16. 16.
    Pietra, C. G., D’Amodio, M. D., Leventhal, M. M. Oh, W. and Brando, J. L. Electron microscopy of cutaneous capillaries of newborn infants: Effects of placental transfusion. Pediatrics, 42 (1968), 678–683Google Scholar
  17. 17.
    Alpert, J. S., Coffman, J. D., Balodimos, M. C., Koncz, L. and Soeldner, J. S. Capillary permeability and blood flow in skeletal muscle of patients with diabetes mellitus and genetic prediabetes. New Engl. J. Med., 286 (1972), 454CrossRefGoogle Scholar
  18. 18.
    McFarlane, A. S. (1969) Physiology and Pathophysiology of Plasma Protein Metabolism. Pergamon Press, Oxford and New York, p. 87CrossRefGoogle Scholar
  19. 19.
    Parving, H.-H., Rossing, N. and Jensen, H. E. Increased metabolic turnover rate and transcapillary escape rate of albumin in essential hypertension. Circulation Res. 35 (1974), 517–552CrossRefGoogle Scholar
  20. 1.
    Giese, J. (1966). Pathogenesis of hypertensive vascular disease, Munksgaard, CopenhagenGoogle Scholar
  21. 2.
    Reeve, E. B. and Chen, A. Y. (1970). Regulation of Interstitial albumin. In Plasma Protein Metabolism, M. A. Rothschild and T. A. Waldmann, eds., Academic Press, New York, pp. 89–109Google Scholar
  22. 3.
    Pietra, G. G., Szidan, J. P., Leventhal, M. M. and Fishman, J. P. Hemoglobin as a tracer in hemodynamic pulmonary edema. Science, 166 (1969), 1643–1646CrossRefGoogle Scholar
  23. 4.
    Goldby, F. S. and Beilin, L. J. Relationship between arterial pressure and the permeability of arterioles to carbon particles in acute hypertension in the rat. Cardiovasc. Res., 6 (1972), 384CrossRefGoogle Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • N. Rossing
  • H.-H. Parving
  • N. A. Lassen

There are no affiliations available

Personalised recommendations