Genetic control of thyroxine transport

  • J. Robbins


Almost all of the thyroid hormone in the plasma of primates is associated with transport proteins, with an extremely small proportion (~0.03%) in the unbound state1. Thyroxine-binding globulin (TBG) is quantitatively the most important, carrying approximately 75% of circulating thyroxine (T4) and triiodothyronine (T3). Thyroxine-binding prealbumin (PA) is another relatively specific transport protein, but is involved mainly in T4 transport. Serum albumin also binds T4 and T3, as it does many other small molecules in blood. Recently, Hoch and Lewallen2 have confirmed earlier suggestions that the plasma lipoproteins transport a minor proportion of the circulating hormones, and in the foetus3 the so-called foetal post-albumin also shows an affinity for T4. Up to the present time, however, no specific role for any of these proteins has been demonstrated, and the major ones appear to function solely as a buffering system for the extrathyroidal hormones. Hillier4 has shown that the rates of dissociation of the hormones from protein are extremely rapid, and indeed rapid enough to permit the expected flux of free hormone in the microcirculation. Although it is possible that in particular tissues some of the transport proteins may function more specifically, the subject I will discuss cannot be related in any obvious way to the control of thyroid hormone action. Nevertheless, the genetic alterations affecting the transport proteins are significant in clinical testing of thyroid function, and also represent an interesting system for the study of genetic influence on plasma protein levels.


Affected Male Thyroid Hormone Action Free Hormone Plasma Protein Level Free Thyroxine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robbins, J. and Rall, J. E. (1966). In Hormones in Blood, 2nd ed., Gray, C. H. and Bacharach, A. L., eds., Academic Press, London, p. 383Google Scholar
  2. 2.
    Hoch, G. H. and Lewallen, C. J. Clin. Endocrinol. Metab., 38 (1974), 663CrossRefGoogle Scholar
  3. 3.
    Andreoli, M. and Robbins, J. J. Clin. Investig., 41 (1964), 1070CrossRefGoogle Scholar
  4. 4.
    Hillier, A. P. J. Physiol., 217 (1971), 625CrossRefGoogle Scholar
  5. 5.
    Robbins, J. Mt. Sinai J. Med., 40 (1973), 511Google Scholar
  6. 6.
    Blumberg, B. S. and Robbins, J. Endocrinol., 67 (1960), 368CrossRefGoogle Scholar
  7. 7.
    Alper, C. A., Robin, N. I. and Refetoff, S. Proc. Nat. Acad. Sci., 63 (1969), 775CrossRefGoogle Scholar
  8. 8.
    Bernstein, R. S., Robbins, J. and Rall, J. E. Endocrinol., 86 (1970), 383CrossRefGoogle Scholar
  9. 9.
    Weiss, M. L., Goodman, M., Prychodko, W. and Tanaka, T. Primates, 12 (1971), 75CrossRefGoogle Scholar
  10. 10.
    Weiss, M. L. and Goodman, M. J. Hum. Evolution, 1 (1972), 41CrossRefGoogle Scholar
  11. 11.
    VanJaarsveld, P., Branch, W. T., Robbins, J. and Edelhoch, H. J. Biol. Chem., 248 (1973), 4706Google Scholar
  12. 12.
    VanJaarsveld, P., Branch, W. T., Robbins, J. Morgan, F. J., Kanda, Y. and Canfield, R. E. J. Biol. Chem., 248 (1973), 7898Google Scholar
  13. 13.
    Branch, W. T., Robbins, J. and Edelhoch, H. J. Biol. Chem., 246 (1971), 6011Google Scholar
  14. 14.
    Blake, C. C. F., Swan, I. D. A., Rerat, C., Berthou, J., Laurent, A. and Rerat, B. J. Mol. Biol., 61 (1971), 217CrossRefGoogle Scholar
  15. 15.
    Morgan, F. J., Canfield, R. F. and Goodman, DeW. S. Biochem. Biophys. Acta, 236 (1971), 798Google Scholar
  16. 16.
    Kolata, G. B. Science, 184 (1974), 452CrossRefGoogle Scholar
  17. 17.
    Yamazaki, T. and Maruyama, T. Science, 178 (1972), 56CrossRefGoogle Scholar
  18. 18.
    Kanai, M., Raz, A. and Goodman, DeW. S. J. Clin. Investig., 47 (1968), 2025CrossRefGoogle Scholar
  19. 19.
    Raz, A., Shiratori, T. and Goodman, DeW. S. J. Biol. Chem., 245 (1970), 1903Google Scholar
  20. 20.
    Peterson, P. A. J. Biol. Chem., 246 (1971), 34Google Scholar
  21. 21.
    Refetoff, S., Robin, N. I. and Alper, C. A. J. Clin. Investig., 51 (1972), 848CrossRefGoogle Scholar
  22. 22.
    Bode, H. H., Rothman, F. J. and Danon, M. J. Clin. Endocrinol. Metab., 37 (1973), 25CrossRefGoogle Scholar
  23. 23.
    Leiba, S., Landau, B., Ber, A., Adam, A. and Sterling, K. J. Clin. Endocrinol. Metab., 38 (1974), 569CrossRefGoogle Scholar
  24. 24.
    Shane, S. R., Seal, V. S. and Jones, J. E. J. Clin. Endocrinol. Metab., 32 (1971), 587CrossRefGoogle Scholar
  25. 25.
    Levy, R. P., Marshall, J. S. and Valayo, N. L. J. Clin. Endocrinol. Metab., 32 (1971), 372CrossRefGoogle Scholar
  26. 26.
    Hamada, S., Takemura, Y. and Sterling, K. J. Clin. Endocrinol. Metab., 33 (1971), 326CrossRefGoogle Scholar
  27. 27.
    Hansen, J. M. and Siersbaek-Nielsen, K. J. Clin. Endocrinol. Metab., 35 (1972), 461CrossRefGoogle Scholar
  28. 28.
    Refetoff, S., Fang, V. S., Robin, N. I. and Marshall, J. S. Endocrinol., 92 (1973), T-8 (Abstract, Amer. Thyroid Assoc.)Google Scholar
  29. 29.
    Stanbury, J. B., Wyngaarden, J. B. and Fredrickson, D. S. (1972). The Metabolic Basis of Inherited Disease, 3rd ed., McGraw-Hill, New York, p. 10Google Scholar
  30. 30.
    Dem, R. J. J. Lab. Clin. Med., 68 (1966), 560Google Scholar
  31. 31.
    Yoshida, A. J. Mol. Biol., 52 (1970), 483CrossRefGoogle Scholar
  32. 32.
    Dem, R. J., McCurdy, P. R. and Yoshida, A. J. Lab. Clin. Med., 73 (1969), 283Google Scholar
  33. 1.
    Socolow, E. L., Woeber, K. A., Purdy, R. H., Holloway, M. T. and Ingbar, S. H. Preparation of 131I-labelled human serum prealbumin and its metabolism in normal and sick patients. J. Clin. Invest., 44 (1965), 1600CrossRefGoogle Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • J. Robbins

There are no affiliations available

Personalised recommendations