Thrombosis and metabolic studies of fibrinogen, prothrombin, plasminogen and tissue thromboplastins

  • Y. Takeda
  • H. Gonmori
  • T. R. Parkhill
  • N. Kobayashi


An important feature of thrombosis is that fibrin is contained in all three kinds of thrombi regardless of their types. Generally, three factors are claimed to be responsible for the formation of thrombus. These are injury to vascular walls, retardation of blood flow, and alteration of blood constituents, and they usually coexist in thrombosis to a variable degree. Therefore, the solution of the problems must come from careful studies of the three factors mentioned above. We too have been studying the problems of thrombosis, particularly, the alteration of blood constituents in thrombosis, with the aim of devising a simple and effective means for prevention, diagnosis and treatment of the disease. In this paper we would like to discuss metabolic studies of fibrinogen, prothrombin, plasminogen and tissue thromboplastins in relation to thrombosis, based mainly on our contributions in the past 10 years.


Disseminate Intravascular Coagulation Metabolic Study Plasma Fibrinogen Blood Constituent Veronal Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laki, K. (1968) Fibrinogen, Marcel Dekker, New York, p. 63Google Scholar
  2. 2.
    Seegers, W. H. (1962) Prothrombin, Harvard University Press, Cambridge, Massachusetts, p. 32, 449.CrossRefGoogle Scholar
  3. 3.
    Reeve, E. B., and Roberts, J. E. The kinetics of the distribution and breakdown of 131I-albumin in the rabbit. J. Gen. Physiol., 43 (1959), 415CrossRefGoogle Scholar
  4. 4.
    Takeda, Y. Studies of the metabolism and distribution of fibrinogen in healthy men with autologous 125I-labelled fibrinogen. J. Clin. Invest., 45 (1966), 103CrossRefGoogle Scholar
  5. 5.
    Takeda, Y. Unpublished observation.Google Scholar
  6. 6.
    Takeda, Y., Chen, A. Y. Studies of the metabolism and distribution of fibrinogen in patients with hemophilia A. J. Clin. Invest., 46 (1967), 1979CrossRefGoogle Scholar
  7. 7.
    Takeda, Y. and Chen, A. Y. Fibrinogen metabolism and distribution in patients with the nephrotic syndrome. J. Lab. Clin. Med., 70 (1967), 678Google Scholar
  8. 8.
    Takeda, Y. Studies of the metabolism and distribution of fibrinogen in patients with rheumatoid arthritis. J. Lab. Clin. Med., 69 (1967), 624Google Scholar
  9. 9.
    Takeda, Y. Fibrinogen metabolism in patients with essential hypertension. Fed. Proc., 25 (1966), 45Google Scholar
  10. 10.
    Takeda, Y. Unpublished observationGoogle Scholar
  11. 11.
    Penick, G. D. (1969). Blood states that predispose to thrombosis. In Thrombosis, Sol Sherry, K. M. Brinkhous, E. Gertor, J. M. Stengel, eds., National Academy of Sciences, Washington, D.C. p. 553Google Scholar
  12. 12.
    Hardaway, R. M. III (1966). Syndromes of disseminated intravascular coagulation, C. C. Thomas Publisher, Springfield, IllinoisGoogle Scholar
  13. 13.
    McKay, D. G. (1965). Disseminated intravascular coagulation, Hoeber Medical Division, Harper and Row, New YorkGoogle Scholar
  14. 14.
    Reeve, E. B., Takeda, Y. and Atencio, A. C. Some observations on the mammalian fibrinogen system in non-steady and steady states. Protides of the biological fluids, 14 (1966), 293Google Scholar
  15. 15.
    Didisheim, P., Loeb, J., Blatrix, C. and Soulier, J. P. Preparation of a human plasma fraction rich in prothrombin, proconvertin, Stuart factor, and PTC and a study of its activity and toxicity in rabbits and man. J. Lab. Clin. Med., 53 (1959), 322Google Scholar
  16. 16.
    Biggs, R. and Denson, K. W. E. The fate of prothrombin and Factors VIII, IX and X transfused to patients deficient in these factors. Brit. J. Haemat., 9 (1963), 532CrossRefGoogle Scholar
  17. 17.
    Frick, P. G. Studies on the turnover rate of stable prothrombin conversion in man. Acta haemat., (Basel), 19 (1958), 20CrossRefGoogle Scholar
  18. 18.
    Hasselback, R. and Hjort, P. F. Effect of heparin on in vivo turnover of clotting factors. J. Appl. Physiol., 15 (1960), 945Google Scholar
  19. 19.
    Hjort, P. F., Egeberg, O. and Mikkelsen, S. Turnover of prothrombin, Factor VII and Factor IX in a patient with haemophilia A. Scand. J. Clin. Lab. Invest., 13 (1961), 688CrossRefGoogle Scholar
  20. 20.
    Loeliger, E. A., van der Esch, B., Mattern, M. J. and Hemker, H. C. The biological disappearance rate of prothrombin, Factors VII, IX and X from plasma in hypothyroidism, hyperthyroidism, and during fever. Thrombos. Diathes, haemorrh. (Stuttgart), 19 (1964), 267Google Scholar
  21. 21.
    Shapiro, S. S. and Martinez, J. Human prothrombin metabolism in normal man and in hypocoagulable subjects. J. Clin. Invest., 48 (1969), 1292CrossRefGoogle Scholar
  22. 22.
    Takeda, Y. Studies of the effects of heparin, coumadin, and vitamin K on prothrombin metabolism and distribution in calves with the use of 125iodine-prothrombin. Characterisation of the prothrombin system. J. Lab. Clin. Med., 75 (1970), 355Google Scholar
  23. 23.
    Takeda, Y. (1970). Effects of typhoid endotoxin on fibrinogen and prothrombin metabolism in calves. In Plasma Protein Metabolism, M. R. Rothschild and T. Waldmann, eds., Academic Press, New York, p. 443Google Scholar
  24. 24.
    Takeda, Y. Studies of the metabolism and distribution of prothrombin in healthy men with homologous 1251-prothrombin. Thrombos. Diathes. haemorrh. (Stuttgart), 27 (1972), 472Google Scholar
  25. 25.
    Takeda, Y. 125I-plasminogen responses in dogs to a single injection of urokinase and typhoid vaccine and to vascular injury. J. Clin. Invest., 51 (1972), 1363CrossRefGoogle Scholar
  26. 26.
    Takeda, Y., Parkhill, T. R. and Nakabayashi, M. Effects of heparin and ε-aminocaproic acid in dogs on 125I-plasmin-generation in response to urokinase. injections and venous injury. J. Clin. Invest., 51 (1972), 2678CrossRefGoogle Scholar
  27. 27.
    Takeda, Y., Parkhill, T. R. and Nakabayashi, M. (1973). Generation of 125I-labelled plasmin in dogs in response to venous injury. In Protein Turnover. Ciba Symposium 9 ( New Series), Elsevier, Amsterdam, p. 203Google Scholar
  28. 28.
    Takeda, Y. Fibrinogen and plasminogen metabolism in relation to thrombosis. Metabolism (Japan), 10 (1973), 124Google Scholar
  29. 29.
    Takeda, Y. and Nakabayashi, M. Physicochemical and biological properties of human and canine plasmins. J. Clin. Invest., 53 (1974), 154CrossRefGoogle Scholar
  30. 30.
    Shulman, S., Alkjaersig, N. and Sherry, S. Physicochemical studies on human plasminogen and plasmin. J. Biol. Chem., 233 (1958), 91Google Scholar
  31. 31.
    Robbins, C. K. and Summaria, L. (1970). Methods in Enzymology, G. E. Pearlman and L. Lorand, eds., Academic Press, New York, p. 184Google Scholar
  32. 32.
    Davies, M. C. and Englert, M. E. Physical properties of highly purified human plasminogen. J. Biol. Chem., 235 (1960), 1011Google Scholar
  33. 33.
    Deutsch, D. G. and Mertz, E. T. Plasminogen: purification from human plasma by affinity chromatography. Science, 170 (1970), 1095CrossRefGoogle Scholar
  34. 34.
    Heberlein, P. L. and Barnhart, M. I. Canine plasminogen: purification and a demonstration of multimolecular forms. Biochim. Biophys. Acta., 168 (1968), 195CrossRefGoogle Scholar
  35. 35.
    Collen, D., Tytgat, G., Clayes, H., Verstraete, M. and Wallen, P. Metabolism of plasminogen in healthy subjects: Effect of tranexamic acid. J. Clin. Invest., 51 (1972), 1310CrossRefGoogle Scholar
  36. 36.
    Andrews, P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J., 96 (1965), 595CrossRefGoogle Scholar
  37. 37.
    Weber, K. and Osborn, M. The reliability of molecular weight determination by dodecyl sulphate–polyacrylamide gel electrophoresis. J. Biol. Chem., 244 (1969), 4406Google Scholar
  38. 38.
    Davis, B. J. Disc electrophoresis. II. Methods and application to human serum proteins. Ann. N.Y. Acad. Sci., 121 (1964), 404CrossRefGoogle Scholar
  39. 39.
    Chargaff, E., Moore, D. H. and Benedich, A. Ultracentrifugal isolation from lung tissue of a macromolecular protein component with thromboplastic properties. J. Biol. Chem., 145 (1942), 593Google Scholar
  40. 40.
    Astrup, T., Albrechtsen, O. K., Claassen, B. A. and Rasmussen, J. Thromboplastic and fibrinolytic activities in vessels of animals. Circ. Res., 7 (1959), 969CrossRefGoogle Scholar
  41. 41.
    Astrup, T. and Buluk, K. Thromboplastic and fibrinolytic activities in vessels of animals. Circ. Res., 13 (1963), 253CrossRefGoogle Scholar
  42. 42.
    Williams, W. J. The activity of human placenta microsomes and brain particles in blood coagulation. J. Biol. Chem., 241 (1966), 1840Google Scholar
  43. 43.
    Deutsch, E., Irsigler, K. and Lomoschlitz, H. Studien über Gewebethromboplastin. I. Reinigung, chemische Charakterisierung and Trennung in Eiweiss- and Lipoiden-teil. Thrombos. Diathes. haemorrh., 12 (1964), 23Google Scholar
  44. 44.
    Hvatum, M. and Prydz, H. Studies on tissue thromboplastin. Its splitting into two separate parts. Thrombos. Diathes. haemorrh., 21 (1969), 217Google Scholar
  45. 45.
    Hvatum, M. and Prydz, H. Studies on tissue thromboplastin. Electronmicroscopy. Thrombos. Diathes. haemorrh., 21 (1969), 223Google Scholar
  46. 46.
    Nemerson, Y. The phospholipid requirement of tissue factor in blood coagulation. J. Clin. Invest., 47 (1968), 72CrossRefGoogle Scholar
  47. 47.
    Nemerson, Y. Characteristics and lipid requirements of coagulant proteins extracted from lung and brain: The specificity of the protein component of tissue factor. J. Clin. Invest., 48 (1969), 322CrossRefGoogle Scholar
  48. 48.
    Nemerson, Y. and Pitlick, F. A. Purification and characterisation of the protein component of tissue factor. Biochem., 9 (1970), 5100CrossRefGoogle Scholar
  49. 49.
    Zeldis, S. M., Nemerson, Y. and Pitlick, F. A. Tissue factor (Thromboplastin): Localisation to plasma membranes by peroxidase-conjugated antibodies. Science, 175 (1972), 766CrossRefGoogle Scholar
  50. 50.
    McFarlane, A. S. Efficient tracer labelling of proteins with iodine. Nature, 182 (1958), 53CrossRefGoogle Scholar
  51. 51.
    Gonmori, H., Takeda, Y. and Parkhill, T. R. Unpublished observationGoogle Scholar
  52. 52.
    Lack, C. W. Proteolytic activity and connective tissue. Brit. Med. Bull., 20 (1964), 217Google Scholar
  53. 53.
    Todd, A. S. Localisation of fibrinolytic activity in tissues. Brit. Med. Bull., 20 (1964), 210Google Scholar
  54. 54.
    Warren, B. A. Fibrinolytic activity of vascular endothelium. Brit. Med. Bull., 20 (1964), 213Google Scholar
  55. 55.
    Tocantins, L. M. Demonstration of antithromboplastic activity in normal and hemophilic plasmas. Am. J. Physiol., 139 (1943), 265Google Scholar
  56. 56.
    Fiala, S. A thermolabile inhibitor of plasma coagulation. Nature, 167 (1951), 279CrossRefGoogle Scholar
  57. 57.
    Schneider, C. L. The active principle of placental toxin: Thromboplastin; its inactivator in blood: Antithromboplastin. Am. J. Physiol., 149 (1947), 123Google Scholar
  58. 58.
    Lanchantin, G. F. and Ware, R. G. Identification of a thromboplastin inhibitor in serum and in plasma. J. Clin. Invest., 32 (1953), 381CrossRefGoogle Scholar
  59. 59.
    Mammen, E. F. (1967). Plasma anticoagulants or inhibitors. In Blood Clotting Enzymology, W. H. Seegers, ed., Academic Press, New York, p. 345CrossRefGoogle Scholar
  60. 60.
    Aoki, N. and von Kaulla, K. N. The extraction of vascular plasminogen activator from human cadavers and a description of some of its properties. Am. J. Clin. Path., 55 (1971), 171Google Scholar
  61. 61.
    Aoki, N. and von Kaulla, K. N. Dissimilarity of human vascular plasminogen activator and human urokinase. J. Lab. Clin. Med., 78 (1971), 354Google Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • Y. Takeda
  • H. Gonmori
  • T. R. Parkhill
  • N. Kobayashi

There are no affiliations available

Personalised recommendations