Nutritional aspects of plasma protein metabolism: the relevance of protein turnover rates during malnutrition and its remission in man

  • W. P. T. James
  • P. M. Sender
  • J. C. Waterlow


It has been known for years that many children with protein-energy malnutrition (PEM) have reduced serum albumin concentrations. Gopalan1 has suggested that the difference between children with marasmus and those with kwashiorkor is not the result of differences in diet but in the capacities of children to adapt to a reduced intake of energy and protein; the marasmic state is thus the result of well maintained physiological mechanisms of adaptation with conservation of albumin mass, whereas in kwashiorkor there is a pathological breakdown in adaptive mechanisms with a fall in the body’s albumin content. Whether these differences represent the result of dietary differences or variations in adaptive capacities has still to be resolved2,3 but it is clear that kwashiorkor is particularly likely to occur in areas where the staple food has a low protein content, for example in Uganda. Most children in developing countries have to adapt to a reduced intake of food but some diets may demand a greater degree of adaptation if albumin is to be conserved. A better understanding of the pathophysiology of albumin metabolism is an important aspect of the work needed to resolve these problems.


Protein Intake Malnourished Child Serum Albumin Concentration Nutritional Aspect Catabolic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gopalan, C. Kwashiorkor and marasmus-evolution and distinguishing features. (1968). In Calorie Deficiencies and Protein Deficiencies, McCance, R. A. and Widdowson, E. M., eds., J. A. Churchill, Ltd., London, p. 49.Google Scholar
  2. 2.
    Whitehead, R. G. and Alleyne, G. A. O. Pathophysiological factors of importance in protein–calorie malnutrition. Brit. Med. Bull., 27 (1972), 72Google Scholar
  3. 3.
    Rao, K. S. J. Evolution of kwashiorkor and marasmus. Lancet, i (1974), 709CrossRefGoogle Scholar
  4. 4.
    Hoffenberg, R., Saunders, S., Linder, G. C., Black, E. and Brock, J. F. (1962) 131I albumin metabolism in human adults after experimental protein depletion and repletion. In Protein Metabolism, F. Gross, ed., Springer-Verlag, Berlin, p. 314CrossRefGoogle Scholar
  5. 5.
    Cohen, S. and Hansen, J. D. L. Metabolism of albumin and γ-globulin in kwashiorkor. Clin. Sci., 23 (1962), 351Google Scholar
  6. 6.
    Picou, D. and Waterlow, J. C. The effect of malnutrition on the metabolism of plasma albumin. Clin. Sci., 22 (1962), 459Google Scholar
  7. 7.
    Waterlow, J. C. Protein malnutrition and albumin breakdown. Lancet, 2 (1962), 1279CrossRefGoogle Scholar
  8. 8.
    Hoffenberg, R., Black, E. and Brock, J. F. Albumin and y-globulin tracer studies in protein depletion states. J. Clin. Invest., 45 (1966), 143CrossRefGoogle Scholar
  9. 9.
    James, W. P. T. and Hay, A. M. Albumin metabolism: effect of the nutritional state and the dietary protein intake. J. Clin. Invest., 47 (1968), 1958CrossRefGoogle Scholar
  10. 10.
    Matthews, C. M. E. (1965) Application of an analogue computer to analysis of experiments with 131I labelled plasma proteins when pools are not in dynamic equilibrium. In Radioaktive Isotope in Klinik und Forschung, K. Fellinger and R. Hofer, eds., Urban and Schwarzenberg, Munich, p. 240Google Scholar
  11. 11.
    Chan, H. and Waterlow, J. C. The protein requirement of infants at the age of about one year. Brit. J. Nutr., 20 (1966), 775CrossRefGoogle Scholar
  12. 12.
    Whitehead, R. G., Frood, J. D. L. and Poskitt, E. M. E. Value of serum albumin measurements in nutritional surveys. Lancet, ii (1971), 288Google Scholar
  13. 13.
    Garlick, P. J., Millward, D. J. and James, W. P. T. The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. Biochem. J., 136 (1973), 935CrossRefGoogle Scholar
  14. 14.
    Garrow, J. S., Fletcher, K. and Halliday, D. Body composition in severe infantile malnutrition. J. Clin. Invest., 44 (1965), 417CrossRefGoogle Scholar
  15. 15.
    Pozefsky, T., Felig, P., Tobin, J. Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J. Clin. Invest., 48 (1969), 2273CrossRefGoogle Scholar
  16. 16.
    Rao, B. S. and Nagabhushan, V. S. Urinary excretion of 3-methylhistidine in children suffering from protein–calorie malnutrition. Life Sciences, 12 (1973), 205CrossRefGoogle Scholar
  17. 17.
    Whitehead, R. G. (1971) Metabolic changes in protein–calorie malnutrition and the assessment of nutritional status. In Proceedings of the International Congress of Pediatrics, Vol. II. Nutritional and Gastroenterology, Vienna, p. 231Google Scholar
  18. 18.
    Sellers, A. L., Katz, J., Bonorris, G. and Okuyama, S. Determination of extravascular albumin in the rat. J. Lab. Clin. Med., 68 (1966), 177Google Scholar
  19. 19.
    Katz, J., Bonorris, G., Golden, S. and Sellers, A. L. Extravascular albumin mass and exchange in rat tissues. Clin. Sci., 39 (1970), 705CrossRefGoogle Scholar
  20. 20.
    Picou, D. and Taylor-Roberts, T. The measurement of total protein synthesis and catabolism and nitrogen turnover in infants in different nutritional states and receiving different amounts of protein. Clin. Sci., 36 (1969), 283Google Scholar
  21. 21.
    Sprinson, D. B. and Rittenberg, D. The rate of utilisation of ammonia for protein synthesis. J. Biol. Chem., 180 (1949), 707Google Scholar
  22. 22.
    Waterlow, J. C. Lysine turnover in man measured by intravenous infusion of L-U-14C-lysine. Clin. Sci., 33 (1971), 507Google Scholar
  23. 23.
    James, W. P. T., Garlick, P. J. and Sender, P. M. Studies of protein metabolism in man with infusions of [14C] tyrosine. Clin. Sci. Mol. Med., 46 (1974), 8Google Scholar
  24. 24.
    Kerr, D. S., Stevens, M. C. G., Robinson, H. M. and Picou, D. (1973) Hypoglycaemia and the regulation of fasting glucose metabolism in malnutrition. In Endocrine Aspects of Malnutrition, Gardner, L. I. and Amacher, P. eds., Kroc Found. Sympos. No. 1, p. 313Google Scholar
  25. 25.
    Young, V. R., Haverberg, L. N., Bilmazes, C. and Munro, H. N. Potential use of 3-methyl histidine excretion as an index of progressive reduction in muscle protein catabolism during starvation. Metabolism, 22 (1973), 1429CrossRefGoogle Scholar
  26. 26.
    Steffee, W. P., Pencharz, P. V., Goldsmith, R. S., Anderson, C. F. and Young, V. R. Protein intake and total body protein turnover in adult subjects. Fed. Proc., 32 (1973), 916Google Scholar
  27. 27.
    Mimura, T., Yamada, C. and Swendseid, M. E. Influence of dietary protein levels and hydrocortisone administration on the branched chain amino acid transaminase activity in rat tissues. J. Nutr., 95 (1968), 493Google Scholar
  28. 28.
    Ichihara, A., Noda, C. and Ogawa, K. Control of leucine metabolism with special reference to branched chain amino and transaminase isozymes. Adv. Enzyme Regn. 11 (1973), 155CrossRefGoogle Scholar
  29. 1.
    Henriques, O. B., Henriques, S. B. and Neuberger, E. Quantitative aspects of glycine metabolism in the rabbit. Biochem. J., 60 (1955), 409CrossRefGoogle Scholar
  30. 2.
    Young, V. R., Haverberj, L. N., Bilmazes, C. and Munro, H. N. Potential use of 3-methylhistidine excretion as an index of progressive reduction in muscle protein catabolism during starvation. Metab. Clin. Experim., 22 (1973), 1429CrossRefGoogle Scholar
  31. 3.
    Blackburn, G. L., Flatt, J. P., Clowes, G. H. and O’Donnel, T. E. Peripheral intravenous feeding with isotonic amino acid solution. Am. J. Surg., 125 (1973), 447CrossRefGoogle Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • W. P. T. James
  • P. M. Sender
  • J. C. Waterlow

There are no affiliations available

Personalised recommendations