Protein synthesis in the perfused liver: Comparative evaluation of the influence of amino acid supply on ribosomal activity of intact and isolated perfused rat liver

  • C. O. Enwonwu


Many investigators1,2 have demonstrated that starvation or dietary protein deprivation produces an immediate fall in synthesis of albumin which returns promptly to normal or above normal levels within 24 hours of refeeding an adequate diet, and there are suggestions that the changes in albumin synthetic rate are mediated by the availability of amino acids to the hepatic cells1. Such observations have triggered widespread interest in the effects of amino acid supply on the cellular organelles involved in protein biosynthesis. Hepatic cytoplasmic ribosomes, as in most mammalian cells, exist either as free ribosomes or bound to membranes of the rough endoplasmic reticulum3.


Liver Donor Ribosomal Subunit Amino Acid Mixture Free Ribosome Amino Acid Supply 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirsch, R. E., Frith, L., Black, E. G. and Hoffenberg, R. Regulation of albumin synthesis and catabolism by alteration of dietary protein. Nature 217 (1968), 578CrossRefGoogle Scholar
  2. 2.
    Morgan, E. H. and Peters, T. Jr. The biosynthesis of rat serum albumin. V. Effect of protein depletion and refeeding on albumin and transferrin synthesis. J. Biol. Chem., 246 (1971), 3500Google Scholar
  3. 3.
    Fawcett, D. W. (1966) The Cell: Its Organelles and Inclusions. W. B. Saunders Co., PhiladelphiaGoogle Scholar
  4. 4.
    Martin, T. E. A simple general method to determine the proportion of active ribosomes in eukaryotic cells. Exptl. Cell Res., 80 (1973), 496CrossRefGoogle Scholar
  5. 5.
    Zylber, E. A. and Penman, S. The effect of high ionic strength on monomers, polyribosomes, and puromycin-treated polyribosomes. Biochim. Biophys. Acta, 204 (1970), 221CrossRefGoogle Scholar
  6. 6.
    Falvey, A. K. and Staehelin, T. Structure and function of mammalian ribosomes. I. Isolation and characterisation of active liver ribosomal subunits. J. Mol. Biol., 53 (1970), 1CrossRefGoogle Scholar
  7. 7.
    Rogers, Q. R. and Harper, A. E. Amino acid diets and maximal growth in the rat. J. Nutr., 87 (1965), 267Google Scholar
  8. 8.
    Miller, L. L., Bly, C. G., Watson, M. L. and Bale, W. F. The dominant role of the liver in plasma protein synthesis: a direct study of the isolated perfused rat liver with the aid of lysine-e-C14. J. Exp. Med., 94 (1951), 431CrossRefGoogle Scholar
  9. 9.
    Miller, L. L. (1973) Technique of isolated rat liver perfusion. In: Isolated Liver Perfusion and Its Applications, I. Bartošek, A. Guaitani and L. L. Miller, eds., Raven Press, New York, p. 11Google Scholar
  10. 10.
    Ross, B. D. (1972) Perfusion Techniques in Biochemistry. Clarendon Press, Oxford.Google Scholar
  11. 11.
    Seglen, P. O. and Jervell, K. F. A simple perfusion technique applied to glucocorticoid regulation of tryptophan oxygenase turnover and bile production in the isolated rat liver. Hoppe–Seyler’s Z. physiol. Chem., 350 (1969), 308CrossRefGoogle Scholar
  12. 12.
    Jefferson, L. S. and Korner, A. Influence of amino acid supply on ribosomes and protein synthesis of perfused rat liver. Biochem. J., 111 (1969), 703CrossRefGoogle Scholar
  13. 13.
    Clemens, M. J. and Korner, A. Amino acid requirement for the growth-hormone stimulation of incorporation of precursors into protein and nucleic acids of liver slices. Biochem. J., 119, (1970), 629CrossRefGoogle Scholar
  14. 14.
    Anthony, L. E. and Faloona, G. R. Plasma insulin and glucagon levels in protein-malnourished rats. Metabolism, 23 (1974), 303CrossRefGoogle Scholar
  15. 15.
    Anthony, L., Geller, S. and Edozien, J. C. Liver protein synthesis in chronic protein–calorie malnutrition. Fed. Proc., 28 (1968), 756Google Scholar
  16. 16.
    Enwonwu, C. O. and Jacobson, K. Relation between adrenal cortex and hepatic protein synthesis in protein–calorie-deficient rats. J. Nutr., 103 (1973), 290Google Scholar
  17. 17.
    Enwonwu, C. O. Distribution of free and membrane-bound ribosomes in livers of protein–calorie-deficient rats. Lab. Invest., 26 (1972), 626Google Scholar
  18. 18.
    Enwonwu, C. O. and Sreebny, L. M. Studies of hepatic lesions of experimental protein–calorie malnutrition in rats and immediate effects of refeeding an adequate protein diet. J. Nutr., 101 (1971), 501Google Scholar
  19. 19.
    Enwonwu, C. O. and Sreebny, L. M. Experimental protein–calorie malnutrition in rats. Biochemical and ultrastructural studies. Exptl. Mol. Pathol. 12 (1970), 332CrossRefGoogle Scholar
  20. 20.
    Drysdale, J. W. and Munro, H. N. Polysome profiles obtained from mammalian tissues by an improved procedure. Biochim. Biophys. Acta, 138 (1967), 616CrossRefGoogle Scholar
  21. 21.
    Sarma, D. S. R., Reid, I. M., Verney, E. and Sidransky, H. Studies on the nature of attachment of ribosomes to membranes in liver. I. Influence of ethionine, sparsomycin, carbon tetrachloride, and puromycin on membrane-bound polyribosomal disaggregation and on detachment of membrane-bound ribosomes. Lab. Invest., 27 (1972), 39Google Scholar
  22. 22.
    Blobel, G. and Potter, V. R. Studies on free and membrane-bound ribosomes in rat liver. I. Distribution as related to total cellular RNA. J. Mol. Biol., 26 (1967), 293CrossRefGoogle Scholar
  23. 23.
    Wunner, W. H., Bell, J. and Munro, H. N. The effect of feeding a tryptophan-free amino acid mixture on rat-liver polysomes and ribosomal ribonucleic acid. Biochem. J., 101 (1966), 417CrossRefGoogle Scholar
  24. 24.
    Enwonwu, C. O. Restitution of secretory proteins as reflected by changes in polyribosomal organisation in salivary glands of rats treated with isoproterenol. Lab. Invest., 27 (1972) 199Google Scholar
  25. 25.
    Enwonwu, C. O. and Munro, H. N. Changes in liver polyribosome patterns following administration of hydrocortisone and actinomycin D. Biochim. Biophys. Acta, 238 (1971), 264CrossRefGoogle Scholar
  26. 26.
    Enwonwu, C. O. and Munro, H. N. Rate of RNA turnover in rat liver in relation to intake of protein. Arch. Biochem. Biophys., 138 (1970), 532CrossRefGoogle Scholar
  27. 27.
    Wunner, W. H. The time sequence of RNA and protein synthesis in cellular compartments following an acute dietary challenge with amino acid mixtures. Proc. Nutr. Soc. (England), 26 (1967), 153Google Scholar
  28. 28.
    Ekren, T., Jervell, K. F. and Seglen, P. O. Insulin and amino acid regulation of polysomes in perfused, diabetic rat liver. Nature New Biology, 229 (1971), 244CrossRefGoogle Scholar
  29. 29.
    Reader, R. W. and Stanners, C. P. On the significance of ribosome dimers in extracts of animal cells. J. Mol. Biol., 28 (1967), 211CrossRefGoogle Scholar
  30. 30.
    Faber, A. J. and Tamaoki, T. Isolation of active ribosomal subunits from L5178Y mouse lymphoma cells. Arch. Biochem. Biophys., 149 (1972), 289CrossRefGoogle Scholar
  31. 31.
    Pilkis, S. J. and Korner, A. Effect of diabetes and insulin treatment on protein synthetic activity of rat liver ribosomes. Biochim. Biophys. Acta, 247 (1971), 597CrossRefGoogle Scholar
  32. 32.
    Enwonwu, C. O. Biochemical and morphologic changes in rat submandibular gland in experimental protein–calorie malnutrition. Exptl. Mol. Pathol., 16 (1972), 244CrossRefGoogle Scholar
  33. 33.
    Martin, T. E. and Wool, I. G. Active hybrid 80S particles formed from subunits of rat, rabbit and protozoan (Tetrahymena pyriformis) ribosomes. J. Mol. Biol., 43 (1969), 151CrossRefGoogle Scholar
  34. 34.
    Enwonwu, C. O. Alterations in ninhydrin-positive substances and cytoplasmic protein synthesis in the brains of ascorbic acid deficient guinea pigs. J. Neurochem., 21 (1973), 69CrossRefGoogle Scholar
  35. 35.
    Enwonwu, C. O., Stambaugh, R. V. and Jacobson, K. L. Protein-energy deficiency in nonhuman primates: biochemical and morphological alterations. Am. J. Clin. Nutr., 26 (1973), 1287CrossRefGoogle Scholar
  36. 36.
    Baliga, B. S., Pronczuk, A. W. and Munro, H. N. Regulation of polysome aggregation in a cell-free system through amino acid supply. J. Mol. Biol., 34 (1968), 199CrossRefGoogle Scholar
  37. 37.
    Enwonwu, C. O. and Glover, V. Alterations in cerebral protein metabolism in the progeny of protein–calorie-deficient rats. J. Nutr., 103 (1973), 61Google Scholar
  38. 38.
    Edozien, J. C. Experimental kwashiorkor and marasmus. Nature, 220 (1968), 917CrossRefGoogle Scholar
  39. 39.
    Enwonwu, C. O. Experimental protein–calorie malnutrition in the guinea pig and evaluation of the role of ascorbic acid status. Lab. Invest., 29 (1973), 17Google Scholar
  40. 40.
    Gaetani, S., Massotti, D. and Spadoni, M. A. Studies of dietary effects on free and membrane-bound polysomes in rat liver. J. Nutr., 99 (1969), 307Google Scholar
  41. 41.
    Reiss, U. and Tappel, A. L. Decreased activity in protein synthesis systems from liver of vitamin-E-deficient rats. Biochim. Biophys. Acta, 312 (1973), 608CrossRefGoogle Scholar
  42. 42.
    Storb, U. and Martin, T. E. Number and activity of free and membrane-bound spleen ribosomes during the course of the immune response. Biochim. Biophys. Acta, 281 (1972), 406CrossRefGoogle Scholar
  43. 43.
    Levitan, I. B. and Webb, T. E. Regulation of tyrosine transaminase in the isolated perfused rat liver. J. Biol. Chem., 244 (1969), 4684Google Scholar
  44. 44.
    McGown, E., Richardson, A. G., Henderson, L. M. and Swan, P. B. Effect of amino acids on ribosome aggregation and protein synthesis in perfused rat liver. J. Nutr., 103 (1973), 109Google Scholar
  45. 45.
    Tavill, A. S., East, A. G., Black, E. G., Nadkarni, D. and Hoffenberg, R. (1973) Regulatory factors in the synthesis of plasma proteins by the perfused rat liver. In: Protein Turnover. Ciba Foundation Symposium 9 (New Series). Elsevier, Amsterdam.Google Scholar
  46. 46.
    Norman, M., Gamulin, S. and Clark, K. The distribution of ribosomes between different functional states in livers of fed and starved mice. Biochem. J., 134 (1973), 387CrossRefGoogle Scholar
  47. 47.
    Horie, Y. and Ashida, K. Stimulation of hepatic protein synthesis in rats fed an adequate protein diet after a low protein diet. J. Nutr., 101 (1971), 1319Google Scholar
  48. 48.
    Gan, J. C. and Jeffay, H. Origins and metabolism of the intracellular amino acid pools in rat liver and muscle. Biochim. Biophys. Acta, 148 (1967), 448CrossRefGoogle Scholar
  49. 49.
    Wannamacher, Jr., R. W., Ribosomal RNA synthesis and function as influenced by amino acid supply and stress. Proc. Nutr. Soc. (England), 31 (1972), 281CrossRefGoogle Scholar
  50. 50.
    Oratz, M., Rothschild, M. A., Burks, A., Mongelli, J. and Schreiber, S. S. (1973) The influence of amino acids and hepatotoxic agents on albumin synthesis, polysomal aggregation and RNA turnover. In: Protein Turnover. Ciba Foundation Symposium 9 (New Series). Elsevier. AmsterdamGoogle Scholar
  51. 51.
    Pronczuk, A. W., Rogers, Q R. and Munro, H. N. Liver polysome patterns of rats fed amino acid imbalanced diets. J. Nutr., 100 (1970), 1249Google Scholar
  52. 52.
    Ip, C. C. Y. and Harper, A. E. Effect of threonine supplementation on hepatic polysome patterns and protein synthesis of rats fed a threonine-deficient diet. Biochim. Biophys. Acta, 331 (1973), 251CrossRefGoogle Scholar
  53. 53.
    Miller, L. L. and John, D. W. (1970) Nutritional, hormonal and temporal factors regulating net plasma protein biosynthesis in the isolated perfused rat liver. In: Plasma Protein Metabolism: Regulation of Synthesis, Distribution and Degradation, M. R. Rothschild and T. Waldmann, eds., Academic Press, New York, p. 207Google Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • C. O. Enwonwu

There are no affiliations available

Personalised recommendations