Studies on regulatory factors in transferrin metabolism in man and the experimental rat

  • Anne Morton
  • S. M. Hamilton
  • D. B. Ramsden
  • A. S. Tavill


The presence in extracellular fluid of the β-globulin, transferrin, with a stability constant for the binding of ferric iron of approximately 1023 M−1 guarantees that iron entering the plasma compartment remains completely protein-bound and immune from the formation of insoluble ferric hydroxide until delivered preferentially to the sites of haemoglobin synthesis1. In patients with a congenital failure of transferrin synthesis there is a disturbance both in the delivery of iron to sites of utilisation and in the mobilisation of iron from storage sites2. There is also evidence that transferrin may play a role in the later phase of iron absorption, namely its transport from the intestinal mucosa to the plasma3. This cumulative evidence indicates the importance of transferrin in the overall regulation of iron metabolism.


Iron Deficiency Iron Uptake Perfuse Liver Total Iron Binding Capacity Plasma Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aisen, P. Annotation: the role of transferrin in iron transport. Brit. J. Haemat., 26 (1974), 159–163CrossRefGoogle Scholar
  2. 2.
    Goya, N., Miyazaki, S., Kodate, S. and Ushio, B. A family of congenital atransferrinemia. Blood, 40 (1972), 239–245Google Scholar
  3. 3.
    Levine, P. H., Levine, A. J. and Weintraub, L. R. The role of transferrin in the control of iron absorption: studies on a cellular level. J. Lab. Clin. Med., 80 (1972), 333–341Google Scholar
  4. 4.
    Katz, J. H. Iron and protein kinetics studied by means of doubly labelled human crystalline transferrin. J. Clin. Invest., 40 (1961), 2143–2152CrossRefGoogle Scholar
  5. 5.
    Gitlin, D., Janeway, C. A. and Farr, L. E. Studies of the metabolism of plasma proteins in nephrotic syndrome; albumin, gamma globulin and iron binding globulin. J. Clin. Invest., 35 (1956), 44–56CrossRefGoogle Scholar
  6. 6.
    Freeman, T. (1962) 131I transferrin metabolism in human subjects. In: Protides of the Biological. Fluids, 9th Colloquium, Bruges, 1961, 213–214Google Scholar
  7. 7.
    Awai, M. and Brown, E. B. Studies of the metabolism of 131I-labelled human transferrin. J. Lab. Clin. Med., 61 (1963), 363–395Google Scholar
  8. 8.
    Morgan, E. H. Factors regulating plasma total iron binding capacity in the rat and. rabbit. Quart. J. Exptl. Physiol., 47 (1962), 57–65CrossRefGoogle Scholar
  9. 9.
    Cromwell, S. (1963) The metabolism of transferrin. In: Protides of the Biological Fluids. Proceedings of the 11th Colloquium, Bruges, H. Peeters, ed., Elsevier, Amsterdam 484–486Google Scholar
  10. 10.
    Gordon, A. H. Factors influencing plasma protein synthesis by the liver Biochem. J., 90 (1964), 18 PGoogle Scholar
  11. 11.
    Morgan, E. H. Factors affecting the synthesis of transferrin by rat tissue slices. J. Biol. Chem., 244 (1969), 4193–4199Google Scholar
  12. 12.
    Lane, R. S. Changes in plasma transferrin levels following the administration of iron. Brit. J. Haemat., 12 (1966), 249–258CrossRefGoogle Scholar
  13. 13.
    Lane, R. S. Transferrin synthesis in the rat. A study using the fluorescent antibody technique. Brit. J. Haemat., 15 (1968), 355–364CrossRefGoogle Scholar
  14. 14.
    Morgan, E. H. Plasma iron binding capacity and iron stores in altered thyroid metabolism in the rat. Quart. J. Exp. Physiol., 48 (1963), 176–180CrossRefGoogle Scholar
  15. 15.
    Noyes, W. D., Bothwell, T. M. and Finch, C. A. The role of the reticuloendothelial cell in iron metabolism. Brit. J. Haemat., 6 (1960), 43–55CrossRefGoogle Scholar
  16. 16.
    Muirhead, E. E., Halden, E. R., Mitchell, J. M., Stirman, J. A. and Jones, F. Sequestration of transferrin during iron absorption in iron deficiency. J. Lab. Clin. Med., 50 (1957), 935–936Google Scholar
  17. 17.
    Weinfeld, A. Storage iron in man. Acta Med. Scand., suppl. 427, 177 (1964), 1–155Google Scholar
  18. 18.
    Jarnum, S. and Lassen, N. A. Albumin and transferrin metabolism in infectious and toxic diseases. Scand. J. Clin. Lab. Invest., 13 (1961), 357–368CrossRefGoogle Scholar
  19. 19.
    O’Shea, M. J., Kershenobich, D. and Tavill, A. S. Effects of inflammation on iron and transferrin metabolism. Brit. J. Haemat., 25 (1973), 707–714CrossRefGoogle Scholar
  20. 20.
    Tavill, A. S. and Kershenobich, D. (1972). Regulation of transferrin synthesis. In: Protides of the biological fluids. Proceedings of the 19th Colloquium, Bruges, H. Peeters, ed., Elsevier, Amsterdam, 489–493CrossRefGoogle Scholar
  21. 21.
    Valberg, L. S., Taylor, K. B., Witts, L. S. and Richards, W. C. D. The effect of iron deficiency on the stomach of the rat. Brit. J. Nutr., 15 (1961), 473–480CrossRefGoogle Scholar
  22. 22.
    Mancini, G., Carbonara, A. O. and Heremans, J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry, 2 (1965), 235–254CrossRefGoogle Scholar
  23. 23.
    Drysdale, J. W. and Munro, H. N. Regulation of synthesis and turnover of ferritin in rat liver. J. Biol. Chem., 241 (1966), 3630–3637Google Scholar
  24. 24.
    Fletcher, J. and Huehns, E. R. Function of transferrin. Nature, 218 (1968), 1211–1214CrossRefGoogle Scholar
  25. 1.
    Tavill, A. S. and Kershenobich, D. Regulation of transferrin synthesis. In: Protides of the biological fluids. Proceedings of the 19th Colloquium, 1971, 489–493Google Scholar
  26. 2.
    Morgan, E. H. Factors affecting the synthesis of transferrin by rat tissue slices. J. Biol. Chem., 244 (1969), 4193–4199Google Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • Anne Morton
  • S. M. Hamilton
  • D. B. Ramsden
  • A. S. Tavill

There are no affiliations available

Personalised recommendations