Control of synthesis of retained and secreted liver proteins in relation to amino acid supply

  • H. N. Munro


The objective of this contribution is to survey the current status of responses of liver protein synthesis to variations in the quantity and quality of amino acid supplied. This survey will distinguish between the synthesis of proteins retained in the liver and of proteins secreted into the blood. The picture will be integrated with other aspects of liver cell metabolism which occur concomitantly with these changes in protein synthesis. A more detailed account of the evidence has been published elsewhere1.


Diurnal Rhythm Liver Protein Albumin Synthesis Ribosome Aggregation Amino Acid Supply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Munro, H. N., Hubert, C. and Baliga, B. S. (1975) Regulation of protein synthesis in relation to amino acid supply—a review in Alcohol and Abnormal Protein Biosynthesis, M. Rothschild, M. Oratz and S. S. Schreiber, eds., Pergamon, Oxford, p. 33Google Scholar
  2. 2.
    Munro, H. N. (1974) Protein hydrolysates and amino acids. In Total Parenteral Nutrition, P. L. White and M. E. Nagy, eds., Publishing Sciences Group, Acton, Mass, p. 59Google Scholar
  3. 3.
    Elwyn, D. (1970) The role of the liver in regulation of amino acid and protein metabolism. In: Mammalian Protein Metabolism, Vol. 4, H. N. Munro, ed., Academic Press, New York, p. 523Google Scholar
  4. 4.
    Clark, C. M., Naismith, D.J. and Munro, H. N. The influence of dietary protein on the incorporation of 14C-glycine and 32P into the ribonucleic acid of rat liver. Biochim. Biophys. Acta, 23 (1957), 587CrossRefGoogle Scholar
  5. 5.
    Munro, H. N. and Steinert, P. (1975) The intracellular organisation of protein synthesis in International Review of Science. Biochemistry Series, Vol 7, Chapter 10, H. R. V. Arnstein, ed., Butterworths, LondonGoogle Scholar
  6. 6.
    Fishman, B., Wurtman, R. J. and Munro, H. N. Daily rhythms in hepatic polysome profiles and tyrosine transaminase activity: role of dietary protein. Proc. Natl. Acad. Sci. U.S., 64 (1969), 677CrossRefGoogle Scholar
  7. 7.
    Symmons, R. A., Maguire, E. J. and Rogers, Q. R. Effect of dietary protein and feeding schedule on hepatic polysome patterns in the rat. J. Nutr. 102 (1972), 639Google Scholar
  8. 8.
    Fleck, A., Shepherd, J. and Munro, H. N. Protein synthesis in rat liver: influence of amino acids in diet on microsomes and polysomes. Science, 150 (1965), 628CrossRefGoogle Scholar
  9. 9.
    Wunner, W. H., Bell, J. and Munro, H. N. The effect of feeding with a tryptophan-free amino acid mixture on rat liver polysomes and ribosomal ribonucleic acid. Biochem. J., 101, (1966), 417CrossRefGoogle Scholar
  10. 10.
    Sidransky, H., Sarma, D. S. R., Bongiorno, M. and Verney, E. Effect of dietary tryptophan on hepatic polyribosomes and protein synthesis in fasted mice. J. Biol. Chem., 243 (1968), 1123Google Scholar
  11. 11.
    Park, O. J., Henderson, L. M. and Swan, P. B. Effects of the administration of single amino acids on ribosome aggregation in rat liver. Proc. Soc. Exp. Biol. & Med., 142 (1973), 1023CrossRefGoogle Scholar
  12. 12.
    Pronczuk, A. W., Rogers, Q. R. and Munro, H. N. Liver polysome patterns of rats fed amino acid imbalanced diets. J. Nutr., 100 (1970), 1249Google Scholar
  13. 13.
    Ip, C. C. Y. and Harper, A. E. Effect of threonine supplementation on hepatic polysome patterns and protein synthesis of rats fed a threonine-deficient diet. Biochim. Biophys. Acta, 331 (1974), 251CrossRefGoogle Scholar
  14. 14.
    Sidransky, H., Verney, E. and Sarma, D. S. R. Effect of tryptophan on polyribosomes and protein synthesis in liver. Am. J. Clin. Nutr., 24 (1971), 779Google Scholar
  15. 15.
    Peters, T., Jr. and Peters, J. C. The biosynthesis of rat serum albumin. J. Biol. Chem., 247 (1972), 3858Google Scholar
  16. 16.
    Kirsch, R. E., Frith, L., Black, E. and Hoffenberg, R. Regulation of albumin synthesis and catabolism by alteration of dietary protein. Nature, 217 (1968), 578CrossRefGoogle Scholar
  17. 17.
    Morgan, E. H. and Peters, T. Jr. The biosynthesis of rat serum albumin. V. Effect of protein depletion and refeeding on albumin and transferrin synthesis. J. Biol. Chem., 246 (1971), 3500Google Scholar
  18. 18.
    Hubert, C., Baliga, B. S., Munro, H. N. and Villee, C. A. Protein synthesis in a cell-free system prepared from human placenta. II. pH 5 enzyme inefficiency due to defects in tRNA charging with resulting loss of elongation factor 1. Biochim. Biophys. Acta, 374 (1975), 359CrossRefGoogle Scholar
  19. 19.
    Vaughan, M. H. and Hansen, B. S. Control of initiation of protein synthesis in human cells. Evidence for a role of unchanged transfer ribonucleic acid. J. Biol. Chem., 248 (1973), 7087Google Scholar
  20. 20.
    Munro, H. N. (1970) Free amino acid pools and their role in regulation. In: Mammalian Protein Metabolism, Vol. IV, chapter 34, Academic Press, New York, p. 299Google Scholar
  21. 21.
    Haseltine, W. A. and Block, R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl. Acad. Sci., 70 (1973), 1564CrossRefGoogle Scholar
  22. 22.
    Enwonwu, C. O. and Munro, H. N. Rate of RNA turnover in rat liver in relation to intake of protein. Arch. Biochem. Biophys., 138 (1970), 532CrossRefGoogle Scholar
  23. 23.
    Clifford, A. J., Riumallo, J. A., Baliga, B. S., Munro, H. N. and Brown, R. R. Liver nucleotide metabolism in relation to amino acid supply. Biochim. Biophys. Acta, 277 (1973), 443CrossRefGoogle Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • H. N. Munro

There are no affiliations available

Personalised recommendations