Advertisement

In vivo behaviour of asialotransferrins

  • E. Regoeczi
  • M. W. C. Hatton

Abstract

In recent years, Ashwell, Morell, Scheinberg and their colleagues established a hepatic pathway for the elimination of a number of desialylated glycoproteins (e.g. the asialo derivatives of ceruloplasmin, orosomucoid, haptoglobin, fetuin, α2-macroglobulin and thyroglobulin) from the circulation. In essence desialylation is effective through the exposure of penterminal galactosyl groups which mediate the binding of the.modified protein to a glycoprotein on the plasma membrane of hepatocytes. In addition to the paper given by Scheinberg (p. 121), several excellent review articlesl1,2 are available as a source of detailed information regarding the hepatic clearance mechanism for asialoglycoproteins.

Keywords

Sialic Acid Human Transferrin Fractional Catabolic Rate Plasma Glycoprotein Cryptic Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashwell, G. and Morell, A. G. (1971) Galactose: a cryptic determinant of glycoprotein catabolism. In: Glycoproteins of Blood Cells & Plasma, G. A. Jamieson and T. J. Greenwalt, eds., Lippincott, Philadelphia, p. 173Google Scholar
  2. 2.
    Ashwell, G. and Morell, A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Advances in Enzymology, 41 (1974) 99Google Scholar
  3. 3.
    Pricer, W. E. and Ashwell, G. The binding of desialylated glycoproteins by plasma membranes of rat liver. J. biol. Chem., 246 (1971), 4825Google Scholar
  4. 4.
    Van Lenten, L. and Ashwell, G. The binding of desialylated glycoproteins by plasma membranes of rat liver. Development of a quantitative inhibition assay. J. Biol. Chem., 247 (1972), 4633Google Scholar
  5. 5.
    Morell, A. G., Irvine, R. A., Sternlieb, I., Scheinberg, I. H. and Ashwell, G. Physical and chemical studies on ceruloplasmin. V. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J. Biol. Chem., 243 (1968) 155Google Scholar
  6. 6.
    Morell, A. G., Gregoriadis, G., Scheinberg, I. H., Hickman, J. and Ashwell, G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem., 246 (1971), 1461Google Scholar
  7. 7.
    Wagh, P. V., Bornstein, I., Winzler, R.J. The structure of a glycopeptide from human orosomucoid (α1—acid glycoprotein). J. Biol. Chem., 244 (1969), 658Google Scholar
  8. 8.
    Jamieson, G. A., Jett, M. and Debernardo, S. L. The carbohydrate sequence of glycopeptide chains of human transferrin. J. Biol. Chem., 246 (1971), 3686Google Scholar
  9. 9.
    Regoeczi, E., Hatton, M.,W. C. and Wong, K.-L. Studies of the metabolism of asialotransferrins: potentiation of the catabolism of human asialotransferrin in the rabbit. Canad. J. Biochem., 52 (1974), 155CrossRefGoogle Scholar
  10. 10.
    Regoeczi, E. and Hatton, M. W. C. Studies of the metabolism of asialotransferrins: the mechanism for the hypercatabolism of human asialotransferrin in the rabbit. Canad. J. Biochem., 52 (1974), 645CrossRefGoogle Scholar
  11. 11.
    Wong, K.-L., Charlwood, P. A., Hatton, M. W. C. and Regoeczi, E. Studies of the metabolism of asialotransferrins: evidence that transferrin does not undergo desialylation in vivo. Clin. Sci. mol. Med., 46 (1974), 763Google Scholar
  12. 12.
    Hatton, M. W. C., Regoeczi, E. and Wong, K.-L. Studies of the metabolism of asialotransferrins: relationship between the carbohydrate composition of bovine, canine and porcine asialotransferrins and their metabolic behaviour in the rabbit. Canad. J. Biochem., 52 (1974), 845CrossRefGoogle Scholar
  13. 13.
    Bezkorovainy, A., Grohlich, D. The behaviour of native and reducedalkylated human transferrin in urea and guanidine-HC1 solutions. Biochim. Biophys. Acta, 147 (1967), 497CrossRefGoogle Scholar
  14. 14.
    Bezkorovainy, A., Zchocke, R. and Grohlich, D. Some physical-chemical properties of succinylated transferrin, conalbumin, and orosomucoid. Biochim. Biophys. Acta., 181 (1969), 295.CrossRefGoogle Scholar
  15. 15.
    O’Shea, M. J., Kershenobich, D. and Tavill, A. S. Effects of inflammation on iron and transferrin metabolism. Brit. J. Haemat., 25 (1973), 707CrossRefGoogle Scholar
  16. 16.
    Van den Hamer, C. J. A., Morell, A. G., Scheinberg, I. H., Hickman, J. and Ashwell, G. Physical and chemical studies on ceruloplasmin. IX. The role of galactosyl residues in the clearance of ceruloplasmin from the circulation. J. Biol. Chem., 245 (1970), 4397Google Scholar
  17. 17.
    Popper, K. (1968) The Logic of Scientific Discovery. Harper, New York, p. 30Google Scholar
  18. 18.
    Matthews, C. M. E. The theory of tracer experiments with 131I-labelled plasma proteins. Phys. Med. Biol., 2 (1957), 36CrossRefGoogle Scholar
  19. 19.
    Winterburn, P. J. and Phelps, C. F. The significance of glycosylated proteins. Nature, 236 (1972), 147CrossRefGoogle Scholar
  20. 20.
    Hudson, B. G., Ohno, M., Brockway, W.J. and Castellino, F.J. Chemical and physical properties of serum transferrins from several species. Biochemistry, 6 (1973), 1047CrossRefGoogle Scholar
  21. 21.
    Stratil, A. and Spooner, R. L. Isolation and properties of individual components of cattle transferrin: the role of sialic acid. Biochemical Genetics, 5 (1971), 347CrossRefGoogle Scholar
  22. 22.
    Neuberger, A. and Marshall, R. D. (1966) Structural analysis of the carbohydrate group of glycoproteins. In Glycoproteins, A. Gottschalk, ed., Elsevier, Amsterdam, p. 263Google Scholar
  23. 1.
    Warren, L. and Spearing, C. W. Mammalian sialidase (neuraminidase). Biochem. Biophys. Res. Commun., 3 (1960), 489CrossRefGoogle Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • E. Regoeczi
  • M. W. C. Hatton

There are no affiliations available

Personalised recommendations