Advertisement

The Biochemistry and Toxicology of Mercury

  • Kenneth H. Falchuk
  • Leonard J. Goldwater
  • Bert L. Vallee
Part of the Aspects of Inorganic Chemistry book series (AOIC)

Abstract

Mercury is distributed widely in the earth’s crust, in sea, ground and rain water. Importantly, all phyla and species naturally contain traces, present either as inorganic or organometallic compounds, or both.1,2 A biological role for the element is thus far undefined; however, it is present in rat liver chromatin3 and methyl mercury induces hepatic protein synthesis in this species.4 It has been known that mercury enters into biological life cycles; however, the awareness that inorganic mercury can be converted into organometallic compounds by bacteria and higher organisms has recently stimulated further interest both in the chemistry and toxicological potential of this element.5–9 This biological conversion of inorganic mercury into organic mercury is particularly significant since extensive industrial and agricultural usage of mercurials affects and increases its distribution in specific regions. Moreover, the burning of fossil fuels generates environmental mercury in amounts comparable to those from industrial processes.10

Keywords

Inorganic Mercury Mercury Compound Organic Mercury Methyl Transfer Minamata Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Wallace, W. Fulkerson, W. D. Shults and W. S. Lyons, Mercury in the Environment-The Human Element. Oak Ridge Tenn: Nat. Lab. NSF-EP-1. (1971).Google Scholar
  2. 2.
    H. V. Weiss, M. Koide and E. D. Goldberg, Science, 174 (1971) p. 692.CrossRefGoogle Scholar
  3. 3.
    S. E. Bryan, A. L. Guy and K. J. Hardy, Biochem., 13 (1974) p. 313.CrossRefGoogle Scholar
  4. 4.
    P. E. Brubaker, G. W. Lucier and R. Klein, Biochem. Biophys. Res. Commun., 44 (1971) p. 1552.CrossRefGoogle Scholar
  5. 5.
    J. M. Wood, F. S. Kennedy and C. G. Rosen, Nature, 220 (1968) p. 173.CrossRefGoogle Scholar
  6. 6.
    J. M. Wood, Advan. Sci. Technol eds R. Metcalf and J. N. Pitts, (Wiley-Interscience, New, York, 1971) pp. 39–55.Google Scholar
  7. 7.
    S. Jensen and A. Jernelöv, Nordforsk. Biocid. Inform., 10 (1967) p. 4.Google Scholar
  8. 8.
    S. Jensen and A. Jernelöv, Nordforsk. Biocid. Inform., 14 (1968) p. 3.Google Scholar
  9. 9.
    S. Jensen and A. Jernelöv, Nature, 223 (1969) p. 753.CrossRefGoogle Scholar
  10. 10.
    O. I. Joensuu, Science, 172 (1971) p. 1027.CrossRefGoogle Scholar
  11. 11.
    K. G. Sillén, Acta Chem. Scand., 3 (1949) p. 539.CrossRefGoogle Scholar
  12. 12.
    S. Hietanen and K. G. Sillén, Acta Chem. Scand., 6 (1952) p. 747.CrossRefGoogle Scholar
  13. 13.
    K. G. Sillen and A. E. Martell, Stability Constants of Metal-Ion Complexes, (Chemical Society, London, 1964).Google Scholar
  14. 14.
    D. P. Hanlon, D. S. Watt and E. W. Westhead, AnaL Biochem., 16 (1966) p. 225.CrossRefGoogle Scholar
  15. 15.
    T. W. Clarkson and M. R. Greenwood, Anal. Biochem., 37 (1970). p. 236.CrossRefGoogle Scholar
  16. 16.
    R. Von Burg, F. Farris and J. C. Smith, J. Chromatography, 97 (1974) p. 65.CrossRefGoogle Scholar
  17. 17.
    T. Giovanoli-Jakubczak, M. R. Greenwood, J. Crispin Smith and T. W. Clarkson, Clin. Chem., 20 (1974) p. 222.Google Scholar
  18. 18.
    H. Kawaguchi and B. L. Vallee, Anal. Chem. 47 (1975) p. 1029.CrossRefGoogle Scholar
  19. 19.
    I. Atsuya, H. Kawaguchi and B. L. Vallee, Anal. Biochem. (1976) in press.Google Scholar
  20. 20.
    R. Benesch and R. E. Benesch, Arch. Biochem. Biophys., 38 (1952) p. 425.CrossRefGoogle Scholar
  21. 21.
    F. L. Hoch and B. L. Vallee, Arch. Biochem. Biophys., 91 (1960) p. 1.CrossRefGoogle Scholar
  22. 22.
    P. D. Boyer, J. Am. chem. Soc., 76 (1954) p. 4331.CrossRefGoogle Scholar
  23. 23.
    Y. Burnstein and R. Sperling, Biochem. Biophys. Acta, 221 (1970) p. 410.Google Scholar
  24. 24.
    L. K. Ramachandran and B. Witkop, Biochemistry, 3 (1964) p. 1603.CrossRefGoogle Scholar
  25. 25.
    R. F. Chen, Arch. Biochem. Biophys., 142 (1971) p. 552.CrossRefGoogle Scholar
  26. 26.
    H. Bassow, A. Rothstein and T. W. Clarkson, Pharmacol. Rev., 13 (1961) p. 185.Google Scholar
  27. 27.
    M. C. Battigelli, J. occup. Med., 2 (1960) p. 337.CrossRefGoogle Scholar
  28. 28.
    E. S. Cook and G. Parisutti, J. biol. Chem., 167 (1947) p.827.Google Scholar
  29. 29.
    W. N. Lipscomb, J. A. Hartsuck, G. N. Reeke, Jr, F. A. Quiocho, P. H. Bethge, M. L. Ludwig, T. A. Steitz, H. Muirhead and J. C. Coppola, Brookhaven Symp. BioL, 21 (1968) p. 24.Google Scholar
  30. 30.
    W. L. Hughes, Jr., J. Am. chem. Soc., 69 (1947) p. 1836.CrossRefGoogle Scholar
  31. 31.
    I. M. Kolthoff, A. Anastasi, W. Stricks, B. H. Tan and G. S. Deshmukh, J. Am. chem. Soc., 79 (1957) p. 5102.CrossRefGoogle Scholar
  32. 32.
    W. L. Hughes, Jr. and H. M. Dintzis, J. biol. Chem., 239 (1964) p. 845.Google Scholar
  33. 33.
    H. Edelhoch, E. Kathalski, R. H. Maybury, W. J. Hughes, Jr. and J. T. Edsall, J. Am. chem. Soc., 75 (1953) p. 5058.CrossRefGoogle Scholar
  34. 34.
    J. L. Webb, Enzyme and Metabolic Inhibition vol. 2 (Academic Press, New York and London, 1969).Google Scholar
  35. 35.
    P. Pulido, J. H. R. Kägi and B. L. Vallee, Biochemistry, 5 (1966) p. 1768.CrossRefGoogle Scholar
  36. 36.
    J. H. R. Kägi, S. R. Himmelhoch, P. Whanger and J. L. Bethune, J. biol. Chem., 249 (1974) p. 3537.Google Scholar
  37. 37.
    M. Piscator, Nord. Hyg. Tidskr., 44 (1963) p. 17.Google Scholar
  38. 38.
    M. Margoshes and B. L. Vallee, J. Am. chem. Soc., 79 (1957) p. 4813.CrossRefGoogle Scholar
  39. 39.
    J. H. R. Kägi and B. L. Vallee, J. biol. Chem., 235 (1960) p. 3188.Google Scholar
  40. 40.
    J. H. R. Kägi and B. L. Vallee, J. biol. Chem., 236 (1961) p. 2435.Google Scholar
  41. 41.
    M. Jakubowski, J. Piotrowski and B. Trojanowska, Toxicol. Appl. Pharmacol., 16 (1970) p. 743.CrossRefGoogle Scholar
  42. 42.
    J. Piotrowski and W. Bolanowska, Med. Pracy., 21 (1970) p. 338.Google Scholar
  43. 43.
    M. H. Klapper, Biochem. Biophys. Res. Commun., 38 (1970) p. 172.CrossRefGoogle Scholar
  44. 44.
    E. E. Rickli and J. T. Edsall, J. biol. Chem., 237 (1962) p. PC258.Google Scholar
  45. 45.
    B. G. Malmstrom, P. O. Nyman, B. Strandberg and B. Tilander, Structure and Activity of Enzymes, eds T. W. Gordon, J. L. Harris, B. S. Hartley, (Academic Press, London; 1964) p. 121.Google Scholar
  46. 46.
    B. Tilander, B. Strandberg and K. Fridborg, J. mol. Biol., 12 (1965) p. 740.CrossRefGoogle Scholar
  47. 47.
    K. Fridborg, K. K. Kannan, A. Liljas, G. Lundin, B. Strandberg, R. Strandberg, B. Tilander and G. Wirén, J. mol. Biol., 25 (1967) p. 505.CrossRefGoogle Scholar
  48. 48.
    B. L. Vallee, T. L. Coombs and F. L. Hoch, J. biol. Chem., 235 (1960) p. 45.Google Scholar
  49. 49.
    A. Ishihama and J. Hurwitz, J. biol. Chem., 244 (1969) p. 6680.Google Scholar
  50. 50.
    B. L. Vallee and J. Riordan, Ann. Rev. Biochem., 38 (1969) p. 733.CrossRefGoogle Scholar
  51. 51.
    B. Nowak, Med. Pracy., 20 (1969) p. 333.Google Scholar
  52. 52.
    M. A. Verity and W. J. Brown, Am. J. Pathos, 61 (1970) p. 57.Google Scholar
  53. 53.
    A. Teraoka, T. Inoue, N. Hotta, N. Udo and K. Miyakawa, Seibutsu Butsuri Kagaku, 14 (1970) p. 291.CrossRefGoogle Scholar
  54. 54.
    L. F. Prescott and S. Ansari, Toxicol. Appl. Pharmacol., 14 (1969) p. 97.CrossRefGoogle Scholar
  55. 55.
    M. Sternberg, I. Szlamka, M. Moisy, P. Rebeyrotte and G. Lagrue, C. R. Acad. Sci. D, 271 (1970) p. 1134.Google Scholar
  56. 56.
    K. Lutomska, J. Pawlak and E. Witek, Czas. Stomatol., 23 (1970) p. 917.Google Scholar
  57. 57.
    K. Takahama, Kumamoto med. J., 23 (1970) p. 84.Google Scholar
  58. 58.
    S. Ringoir, Nephron., 7 (1970) p. 538.CrossRefGoogle Scholar
  59. 59.
    B. M. Shapiro and E. R. Stadtman, J. biol. Chem., 242 (1967) p. 5069.Google Scholar
  60. 60.
    A. Guha, S. Englard and I. Listowsky, J. biol. Chem., 243 (1968) p. 609.Google Scholar
  61. 61.
    J. Grisolla Ripoll, D. A. Diederich and S. Grisolia, Biochem. Biophys. Res. Commun., 41 (1970) p. 1238.CrossRefGoogle Scholar
  62. 62.
    D. Diederich, A. Khan, I. Santos and S. Grisolia, Biochem. Biophys. Acta, 212 (1970) p. 441.Google Scholar
  63. 63.
    C. Ramel, Nord. Hyg. Tidskr., 50 (1969) p. 135.Google Scholar
  64. 64.
    C. Ramel, Hereditas, 61 (1969) p. 208.CrossRefGoogle Scholar
  65. 65.
    R. Lorente Albinana, Rev. Biol. Lisbon., 6 (1968) p. 313.Google Scholar
  66. 66.
    S. Katz and V. Santilli, Fed. Proc., 21 (1962) p. 376.Google Scholar
  67. 67.
    L. S. Kan and N. C. Li, J. Am. chem. Soc., 92 (1970) p. 4823.CrossRefGoogle Scholar
  68. 68.
    H. T. Writh and N. Davidson, J. Am. chem. Soc., 86 (1964) p. 4325.CrossRefGoogle Scholar
  69. 69.
    C. A. Thomas, Jr., J. Am. chem. Soc., 76 (1954) p. 6032.CrossRefGoogle Scholar
  70. 70.
    T. Yamane and N. Davidson, J. Am. chem. Soc., 83 (1961) p. 2599.CrossRefGoogle Scholar
  71. 71.
    T. Yamane and N. Davidson, Biochem. Biophys. Acta, 55 (1962) p. 609.CrossRefGoogle Scholar
  72. 72.
    G. L. Eichhorn and P. Clark, J. Am. chem. Soc., 85 (1963) p. 4020.CrossRefGoogle Scholar
  73. 73.
    G. L. Eichhorn, J. J. Butzow, P. Clark and E. Tarren, Biopolymers, 5 (1967) p. 283.CrossRefGoogle Scholar
  74. 74.
    R. B. Simpson, J. Am. chem. Soc., 86 (1964) p. 2059.CrossRefGoogle Scholar
  75. 75.
    P. Y. Cheng, D. S. Honbo and J. Rozsnyai, J. Biochem., 8 (1969) p. 4470.CrossRefGoogle Scholar
  76. 76.
    P. Y. Cheng, Biochem. Biophys. Res. Commun., 33 (1968) p. 746.CrossRefGoogle Scholar
  77. 77.
    S. Katz, J. Am. chem. Soc., 74 (1952) p. 2238.CrossRefGoogle Scholar
  78. 78.
    D. W. Gruenwedel and N. Davidson, J. mol. Biol., 21 (1966) p. 129.CrossRefGoogle Scholar
  79. 79.
    R. N. Izatt, J. J. Christensen and J. H. Rytting, Chem. Revs., 71 (1971) p. 439.CrossRefGoogle Scholar
  80. 80.
    G. L. Eichhorn, Inorganic Biochemistry, vol. 2., ed. G. L. Eichhorn, (Elsevier Scientific Publishing Co., Amsterdam, London, New York, 1973) p. 1226.Google Scholar
  81. 81.
    N. Davidson, J. Widholm, U. S. Nandi, R. Jensen, B. M. Olwera and J. C. Wang, Proc. Natn. Acad. Sci. US., 53 (1965) p. 111.CrossRefGoogle Scholar
  82. 82.
    U. S. Nandi, J. C. Wang and N. Davidson, Biochemistry, 4 (1965) p. 1687. Niigata Report, (Tokyo, Ministry of Health and Welfare, 1967).CrossRefGoogle Scholar
  83. 83.
    G. Luck and G. Zimmer, Eur. J. Biochem., 18 (1971) p. 140.CrossRefGoogle Scholar
  84. 84.
    H. Sakai, Biophys. Biochem. Cytol., 8 (1960) p. 609.CrossRefGoogle Scholar
  85. 85.
    M. Umeda, K. Saito, K. Hirose and M. Saito, Jap. J. exp. Med., 39 (1969) p. 47.Google Scholar
  86. 86.
    W. D. Stein, The movement of molecules across cell membranes, (Academic Press, New York, 1967) pp. 289–95.Google Scholar
  87. 87.
    D. D. Tyler, Biochem. J., 111 (1969) p. 65.CrossRefGoogle Scholar
  88. 88.
    J. C. Skou, ProgressBiophys. Biophys. Chem., 14 (1964) p. 131.CrossRefGoogle Scholar
  89. 89.
    R. I. Macay and R. E. L. Farmer, Biochem. Biophys. Acta, 211 (1970) p. 104.CrossRefGoogle Scholar
  90. 90.
    S. F. Schuurmans, B. P. Sani and D. R. Sanadi, Biochem. Biophys. Res. Commun., 39 (1970) p. 1026.CrossRefGoogle Scholar
  91. 91.
    T. Norseth, Biochem. Pharmacol, 17 (1968) p. 581.CrossRefGoogle Scholar
  92. 92.
    H. V. Mailing, J. S. Wasson and S. S. Epstein, Newslett. Environ. Mutagen Soc., 3 (1970) p. 7.Google Scholar
  93. 93.
    G. Fiskesjo, Hereditas, 62 (1969) p. 314.CrossRefGoogle Scholar
  94. 94.
    G. Fiskesjo, Hereditas, 64 (1970) p. 142.CrossRefGoogle Scholar
  95. 95.
    D. Mazia, The role of thiol groups in the structure and function of the mitotic apparatus 367 Sulfur in Proteins, ed. R. Benesch (Academic Press, 1959).Google Scholar
  96. 96.
    T. Bibring and J. Baxandall, J. cell Biol., 48 (1971) p. 324.CrossRefGoogle Scholar
  97. 97.
    C. Ramel, Hereditas, 57 (1967) p. 445.CrossRefGoogle Scholar
  98. 98.
    S. Skerfving, K. Hansson and J. Lindsten, Archs envir. Hlth, 21 (1970) p. 133.CrossRefGoogle Scholar
  99. 99.
    Kumamoto University, Pathological, Clinical and Epidemiological Research About Minamata Disease: 10 Years Later (Japanese) (1973).Google Scholar
  100. 100.
    E. Schoepf, Naturwissenshaften, 56 (1969) p. 464.CrossRefGoogle Scholar
  101. 101.
    E. Schoepf, K. H. Schulz and I. Isensee, Arch. klin. Exp. Dermatol., 234 (1969) p. 420.CrossRefGoogle Scholar
  102. 102.
    E. Schoepf and G. Nagy, Acta Haematol., 43 (1970) p. 73.CrossRefGoogle Scholar
  103. 103.
    P. Pfeiffer and B. Dorne, Biochem. Biophys. Acta, 228 (1971) p. 456.Google Scholar
  104. 104.
    B. Dorne, G. Jonard, J. Witz and L. Hirth, Virology, 43 (1971) p. 279.CrossRefGoogle Scholar
  105. 105.
    J. T. Buxton, J. C. Hewitt, R. H. Gadsden and G. B. Bradham, J. Am. med. Ass., 193 (1965) p. 573.CrossRefGoogle Scholar
  106. 106.
    D. T. Teng and J. C. Brennan, Radiology, 73 (1959) p. 354.CrossRefGoogle Scholar
  107. 107.
    J. T. Hallee, Atn. Rev. Respirat. Diseases, 99 (1969) p. 430.Google Scholar
  108. 108.
    L. Friberg, S. Hammarstrom and A. Hystrom, AMA Arch. Ind. Hyg., 8 (1953) p. 149.Google Scholar
  109. 109.
    L. J. Goldwater, AMA Arch. Ind. Hyg., 8 (1953) p. 558.Google Scholar
  110. 110.
    M. M. Joselow, L. J. Goldwater and S. B. Weinberg, Arch. environ. Hlth, 15 (1967) p. 64.CrossRefGoogle Scholar
  111. 111.
    M. M. Joselow and L. J. Goldwater, Arch. environ. Hlth, 15 (1967) p. 155.CrossRefGoogle Scholar
  112. 112.
    L. J. Goldwater, A. C. Ladd and M. B. Jacobs, Arch. environ. Hlth, 9 (1964) p. 735.CrossRefGoogle Scholar
  113. 113.
    M. B. Jacobs, A. C. Ladd and L. J. Goldwater, Arch. environ. Hlth, 9 (1964) p. 454.CrossRefGoogle Scholar
  114. 114.
    J. Warkany and D. M. Hubbard, Lancet, 254 (1948) 829.CrossRefGoogle Scholar
  115. 115.
    K. Liebscher and H. Smith, Arch. environ. Hlth, 17 (1968) p. 881.CrossRefGoogle Scholar
  116. 116.
    L. J. Goldwater and A. Nicolau, Arch. environ. Hlth, 12 (1966) p. 196.CrossRefGoogle Scholar
  117. 117.
    L. J. Goldwater, Mercury: A History of Quicksilver (Baltimore, York Press, 1972).Google Scholar
  118. 118.
    W. L. Hughes, Jr., Ann. N.Y. Acad. Sci., 65 (1957) p. 454.CrossRefGoogle Scholar
  119. 119.
    A. C. Ladd, L. J. Goldwater and M. B. Jacobs, Arch. environ. Hlth, 9 (1964) p. 43.CrossRefGoogle Scholar
  120. 120.
    M. Kutsuna, ed., Minamata Disease, Kumamoto, Japan, [Kumamoto University, (English), 1968].Google Scholar
  121. 121.
    F. Bakir, S. F. Damluji, L. Amin-Zaki, M. Murtadha, A. Khalidi, N. Y. Al-Rawi, S. Tiktriti, H. I. Dhahir, T. W. Clarkson, J. C. Smith and R. A. Doherty, Science, 181 (1973) p. 230.CrossRefGoogle Scholar
  122. 122.
    L. Friberg and J. Vostal, (eds), Mercury in the Environment: A Toxicological and Epidemiological Appraisal, (Stockholm: Karolinska Institute, 1971).Google Scholar
  123. 123.
    H. E. Ganther, C. Goudie, M. L. Sunde, M. J. Kopecky, P. Wagner, O. Sange Hwan and W. G. Hoekstra, Science, 175 (1972) p. 1122.CrossRefGoogle Scholar
  124. 124.
    J. E. Baer and K. H. Beyer, Ann. Rev. Pharmacol, 6 (1966) p. 261.CrossRefGoogle Scholar
  125. 125.
    J. W. Daniel and J. C. Gage, Biochem. J., 111 (1969) p. 20 P.CrossRefGoogle Scholar
  126. 126.
    J. Pǎrízek and I. Oštádalová, Experientia, 23 (1967) p. 142.CrossRefGoogle Scholar
  127. 127.
    J. Pǎrízek, I. Beneš, I. Oštádalová, A. Babický, J. Bene and J. Lener, Physiologia bohemoslov, 18 (1969) p. 95.Google Scholar
  128. 128.
    O. A. Levander and L. C. Argrett, Toxic. Appl. Pharmac., 14 (1969) p. 308.CrossRefGoogle Scholar
  129. 129.
    M. M. El-Begearmi, C. Goudie, H. E. Ganther and M. L. Sunde, Fed. Proc., 32 (1973) p. 886.Google Scholar
  130. 130.
    B. Stillings, H. Lagally, J. Soares and D. Miller, Abstracts of Short Communications, 9th International Congress of Nutrition, Mexico, D.F., (1972) p. 206.Google Scholar
  131. 131.
    S. D. Potter and G. Matrone, Fed. Proc., 32 (1973) p. 929.Google Scholar
  132. 132.
    J. Pǎrízek, I. Oštádalová, J. Kalousková, A. Babický and J. Beneš, Newer Trace Elements in Nutrition, ed. W. Mertz and W. E. Cornatzer (Marcel Dekker, New York, 1971) p. 85.Google Scholar
  133. 133.
    L. Kosta, A. R. Byrne and V. Zelenko, Nature, 254 (1975) p. 238.CrossRefGoogle Scholar
  134. 134.
    J. Pǎrízek, I. Beneš, I. Ostádalová, A. Babický, J. Beneš and J. Pither, Mineral Metabolism in Paediatrics, eds D. Bartrop and W. L. Burland, (Blackwell, Edinburgh, 1969).Google Scholar
  135. 135.
    J. H. Koeman, W. H. M. Peeters and C. H. M. Koudstaal-Hol, Nature, 245 (1973) p. 386.CrossRefGoogle Scholar
  136. 136.
    D. E. Robertson, L. A. Rancitelli, J. C. Langford and R. W. Perkins, Workshop Sponsored by the National Science Foundation’s Office for the International Decade for Oceanographic Exploration (Brookhaven National Laboratory, Upton, New York, May 24–26, 1973).Google Scholar
  137. 137.
    G. Lunde, J. Sci. Fd. Agric., 19 (1968) p. 432.CrossRefGoogle Scholar
  138. 138.
    T. W. Clarkson, ‘Recent Advances in the Toxicology of Mercury with Emphasis on the Alkylmercurials’. Cleveland: CRC Reviews in Toxicology, March 1972, p. 205.Google Scholar
  139. 139.
    T. W. Clarkson, ‘The Pharmacology of Mercury Compounds’, Ann. Rev. Pharmacol., 12 (1972) p. 375.CrossRefGoogle Scholar
  140. 140.
    R. Kishore and V Guinn, Chem. Eng. News, 14 (Aug. 30, 1971).Google Scholar
  141. 141.
    H. T. Shacklette, U.S. Geol. Surv. Prof. Pap., 713 (1970) p. 35.Google Scholar
  142. 142.
    K. Noren and G. Westöö, Var. Foeda., 19 (1967) p. 13.Google Scholar
  143. 143.
    A. Jernelöv, Chemical Fallout, eds M. W. Mller and G. G. Berg, Springfield, Ill: Thomas, 1969, pp. 71, 93, 240.Google Scholar
  144. 144.
    T. Jarvenpää, M Tillander and J. K. Miettinen, Suom. Kemistilehti B, 43 (1970) p. 439.Google Scholar
  145. 145.
    J. A. Halperin and J. P. Maher, J. Am. chem. Soc., 86 (1964) p. 2311.CrossRefGoogle Scholar
  146. 146.
    K. Lindstrand, Nature, 204 (1964) p. 188.CrossRefGoogle Scholar
  147. 147.
    N. lmura, E. Sukagawa, S.-K. Pan, K. Nagao, G.-Y. Kim, T. Kivan and T. Ukita, Science, 172 (1971) p. 1248.CrossRefGoogle Scholar
  148. 148.
    H. A. O. Hill, J. M. Pratt, S. Risdale, F. R. Williams and R. J. P. Williams, Chem. Commun., 124 (1970) p. 341.CrossRefGoogle Scholar
  149. 149.
    L. Bertilsson and H. Y. Neujahr, Biochemistry, 10 (1970) p. 2805.Google Scholar
  150. 150.
    J. R. Guest, C. W. Helleiner, M. J. Cross and D. D. Woods, Biochem. J., 76 (1960) p. 396.CrossRefGoogle Scholar
  151. 151.
    G. T. Burke, J. H. Mangum and J. D. Brodie, Biochem., 9 (1970) p. 4297.CrossRefGoogle Scholar
  152. 152.
    G. Westöö, Var Foeda, 19 (1967) p. 121.Google Scholar
  153. 153.
    L. Landner, Nature, 230 (1971) p. 452.CrossRefGoogle Scholar
  154. 154.
    L. Ljungdahl, E. Irion and H. G. Wood, Biochemistry, 4 (1965) p. 2771.CrossRefGoogle Scholar
  155. 155.
    B. A. Blaylock and T. C. Stadtman, Arch. Biochem. Biophys., 116 (1966) p. 138.CrossRefGoogle Scholar
  156. 156.
    H. A. Barker and A. van Leenwenhoch, Microbiol. Serol., 6 (1940) p. 20.Google Scholar
  157. 157.
    M. P. Bryant, E. A. Wolin, M. J. Wolin and R. S. Wolfe Arch. Mikrobiol., 59 (1967) p. 20.CrossRefGoogle Scholar
  158. 158.
    T. Suzuki, K. Furukawa and K. Tonomura, J. Ferment. Technol., 46 (1968) p. 1048.Google Scholar
  159. 159.
    T. Suzuki and K. Tonomura, Kogyo Gijutsuin Biseibutsu Kogyo Gilutsu Kenkyusho Kenkyu Hokoku 36 (1969) p. 11.Google Scholar
  160. 160.
    K. Furukawa, T. Suzuki and K. Tonomura, Agr. biol. Chem., 33 (1969) p. 128.CrossRefGoogle Scholar
  161. 161.
    K. Tonomura, Kagaku, Kyoto, 24 (1969) p. 508.Google Scholar
  162. 162.
    K. Tonomura and F. Kanzaki, Hakko Kogaku Zasshi, 47 (1969) p. 430.Google Scholar
  163. 163.
    K. Tonomura and F. Kanzaki, Biochim. Biophys. Acta, 184 (1969) p. 227.CrossRefGoogle Scholar
  164. 164.
    W. J. Spangler, G. L. Spigarelli, G. M. Rose and H. M. Miller, Science, 180 (1973) p. 192.CrossRefGoogle Scholar

Copyright information

© K. H. Falchuk, L. J. Goldwater and B. L. Vallee 1977

Authors and Affiliations

  • Kenneth H. Falchuk
    • 1
  • Leonard J. Goldwater
    • 2
  • Bert L. Vallee
    • 3
  1. 1.Biophysics Research Laboratory of the Department of Biological Chemistry, the Department of MedicineHarvard Medical SchoolUSA
  2. 2.Peter Bent Brigham HospitalBostonUSA
  3. 3.Department of Community Health ScienceDuke University Medical CenterDurhamUSA

Personalised recommendations