Advertisement

Some Restrictions on Constitutive Equations

  • R. S. Rivlin
Chapter

Abstract

The condition for stability of a homogeneous state of deformation of an elastic body under dead-loading is derived on the basis of the Hadamard criterion. The strong-ellipticity condition then follows as a necessary condition. The pure homogeneous deformation is then discussed, of a cube of incompressible isotropic neo-Hookean elastic material, under dead-loading by three equal pairs of equal and opposite forces applied to the faces of cube. It is shown that the resulting state of pure homogeneous deformation is not uniquely determined. The implications of this result, with respect to the material stability conditions proposed by Coleman and Noll and by Truesdell and Toupin are discussed. Finally, some explicit restrictions on the strain—energy function are given, which result from the consideration that the velocities of propagation of plane waves in the pure homogeneously deformed material must be real.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Oldroyd. Proc. Roy. Soc., A 202 (1950), 407CrossRefGoogle Scholar
  2. 2.
    R. S. Rivlin and J. L. Ericksen. J. Rat. Mech. Anal., 4 (1955), 323Google Scholar
  3. 3.
    A. E. Green and R. S. Rivlin. Arch. Rat. Mech. Anal., 1 (1957), 1CrossRefGoogle Scholar
  4. 4.
    W. Noll. Arch. Rat. Mech. Anal., 2 (1958), 197CrossRefGoogle Scholar
  5. 5.
    A. C. Pipkin and R. S. Rivlin. Arch. Rat. Mech. Anal., 4 (1959), 129CrossRefGoogle Scholar
  6. 6.
    M. Reiner. Amer. J. Math., 67 (1945), 350CrossRefGoogle Scholar
  7. 7.
    R. S. Rivlin. J. Rat. Mech. Anal., 4 (1955), 681Google Scholar
  8. 8.
    G. F. Smith and R. S. Rivlin. Arch. Rat. Mech. Anal., 1 (1957), 107CrossRefGoogle Scholar
  9. 9.
    R. S. Rivlin. Arch. Rat. Mech. Anal., 4 (1960), 262CrossRefGoogle Scholar
  10. 10.
    G. F. Smith, M. M. Smith and R. S. Rivlin. Arch. Rat. Mech. Anal., 12 (1963), 93CrossRefGoogle Scholar
  11. 11.
    A. J. M. Spencer and R. S. Rivlin. Arch. Rat. Mech. Anal., 9 (1962), 45CrossRefGoogle Scholar
  12. 12.
    G. F. Smith and R. S. Rivlin. Arch. Rat. Mech. Anal., 15 (1964), 169CrossRefGoogle Scholar
  13. 13.
    A. J. M. Spencer. Arch. Rat. Mech. Anal., 18 (1965), 51CrossRefGoogle Scholar
  14. 14.
    A. C. Pipkin and A. S. Wineman. Arch. Rat. Mech. Anal., 12 (1963), 420CrossRefGoogle Scholar
  15. 15.
    A. S. Wineman and A. C. Pipkin. Arch. Rat. Mech. Anal., 17 (1964), 184CrossRefGoogle Scholar
  16. 16.
    R. S. Rivlin. Phil. Trans., A 240 (1948), 491CrossRefGoogle Scholar
  17. 17.
    L. Mullins, R. S. Rivlin and S. M. Gumbrell. Trans. Faraday Soc., 49 (1953), 1495CrossRefGoogle Scholar
  18. 18.
    L. R. G. Treloar. The Physics of Rubber Elasticity, Clarendon Press, Oxford (1949)Google Scholar
  19. 19.
    B. D. Coleman and W. Noll. Arch. Rat. Mech. Anal., 4 (1959), 97CrossRefGoogle Scholar
  20. 20.
    R. S. Rivlin. Q. Appl. Math., 25 (1967), 119Google Scholar
  21. 21.
    C. Truesdell and W. Noll. Thé Non-Linear Field Theories of Mechanics, Handbuch der Physik, vol. 3 ( 3 ) Springer, Berlin (1965)Google Scholar
  22. 22.
    M. Baker and J. L. Ericksen. J. Wash. Acad. Sci., 44 (1954), 33Google Scholar
  23. 23.
    C. Truesdell. Z. Angew. Math. Mech., 36 (1956), 97CrossRefGoogle Scholar
  24. 24.
    C. Truesdell and R. Toupin. Arch. Rat. Mech. Anal., 12 (1963), 1CrossRefGoogle Scholar
  25. 25.
    J. Hadamard. Bull. Soc. Math. France, 29 (1901), 50Google Scholar
  26. 26.
    J. L. Ericksen. J. Rat. Mech. Anal., 2 (1953), 329Google Scholar
  27. 27.
    M. Hayes and R. S. Rivlin. Arch. Rat. Mech. Anal., 8 (1961), 15CrossRefGoogle Scholar
  28. 28.
    K. N. Sawyers and R. S. Rivlin. Int. J. Solids Structures in the pressGoogle Scholar
  29. 29.
    M. F. Beatty. Int. J. Solids Structures, 3 (1967), 23CrossRefGoogle Scholar
  30. 30.
    R. Hill. J. Mech. Phys. Solids, 5 (1957), 229CrossRefGoogle Scholar
  31. 31.
    A. E. Green and J. E. Adkins. Large Elastic Deformations, Clarendon Press, Oxford (1960)Google Scholar
  32. 32.
    R. S. Rivlin. Q. Appl. Math. in the pressGoogle Scholar
  33. 33.
    C. Truesdell. Continuum Mechanics III. Foundations of Elasticity Theory, Gordon & Breach, New York (1965)Google Scholar

Copyright information

© Instituto de Alta Cultura-Núcleo de Estudos de Engenharia Mecanica 1973

Authors and Affiliations

  • R. S. Rivlin
    • 1
  1. 1.Center for the Application of MathematicsLehigh UniversityBethlehemUSA

Personalised recommendations