• R. A. C. Slater


When a solid body is subjected to a force of small magnitude it deforms elastically such that the strain is directly proportional to the stress and when relieved of the stress it eventually returns to its original dimensions. Elastic deformation is therefore a reversible or recoverable process. The well known theory of elasticity is concerned with the mathematical study of stress and strain in elastically deformed solids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tresca, H., Sur l’ecoulement des corps solides soumis à de fortes pression, C. R. Acad. Sci. Paris, 59, 754 (1864)Google Scholar
  2. 2.
    De Saint-Venant, B., Memoire sur l’etablissement des équations différentielles des mouvements intérieurs opéres dans les corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état, C. R. Acad. Sci. Paris, 70, 473 (1870)Google Scholar
  3. 3.
    Lévy M., Memoire sur les équations générales des mouvements intérieurs des corps solids ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état, C. R. Acad. Sci. Paris, 70, 1323 (1870)Google Scholar
  4. 4.
    Haar, A. and von Karman, T., Zur Theorie der Spannungszustände in plastischen und sandartigen Medien, Nachr. Ges. Wiss. Göttingen, 204 (1909)Google Scholar
  5. 5.
    Von Mises, R., Mechanik der festen Körper im plastisch deformablen Zustant, Nachr. Ges. Wiss. Göttingen, 582 (1913).Google Scholar
  6. 6.
    Hencky, H. Z., Zur Theorie Plastischer Deformationen und der hierduch im Material hervorgerufenen Nebenspannunger, Z. angew. Math. Mech., 4, 323 (1924)CrossRefGoogle Scholar
  7. 7.
    Prandtl, L., Über die Härte Plasticher Körper, Nachr. Ges. Wiss. Göttingen, 74 (1920)Google Scholar
  8. 8.
    Hencky, H. Z., Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern, Z. angew. Math. Mech., 3, 241 (1923)CrossRefGoogle Scholar
  9. 9.
    Geiringer, H., Beitrag zum Vollständigen ebenen Plastizitäts problem, Proc. 3rd Intern. Congr. App. Mech., 2, 185 (1930)Google Scholar
  10. 10.
    Von Karman, T., Beitrag zur Theorie des Walzvorganges, Z. angew. Math Mech., 5, 130 (1925)Google Scholar
  11. 11.
    Sachs, G., Beitrag zur Theorie des Ziehvorganges, Z. angew. Math. Mech., 7, 235 (1927)CrossRefGoogle Scholar
  12. 12.
    Siebei, E., The plastic forming of metals (translated by J. H. Hitchcock), Steel, (Oct. 16, 1933 to May 7, 1934 )Google Scholar
  13. 13.
    Lode, W., Versuch über den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen, Kupfer und Nickel, Z. Phys., 36, 913 (1926)CrossRefGoogle Scholar
  14. 14.
    Taylor, G. I. and Quinney, H., The plastic distortion of metals, Phil. Trans. R. Soc., A230, 323 (1931)Google Scholar
  15. 15.
    Reuss, A., Beruecksichtigung der elastischen Formaenderungen in der Plastizitätstheorie, Z. angew. Math. Mech., 10, 266 (1930)CrossRefGoogle Scholar
  16. 16.
    Schmidt, R., Über den Zusammenhang von Spannungen und Formänderingen im Verfestigungsgebiet, Ing.-Arch. 3, 215 (1932)CrossRefGoogle Scholar
  17. 17.
    Odquist, F. K. G., Die Verfestigung von flussiesenähalichen Körpern, Z. angew. Math. Mech., 13, 360 (1933)CrossRefGoogle Scholar
  18. 18.
    Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, London (1950)Google Scholar
  19. 19.
    Green, A. P., A theoretical investigation of the compression of a ductile material between smooth flat dies, Phil. Mag., 42, 900 (1951)CrossRefGoogle Scholar
  20. 20.
    Green, A. P., Plastic yielding of notched bars due to bending, Q 11 Mech. appl. Math., 6, 223 (1953)CrossRefGoogle Scholar
  21. 21.
    Green, A. P., On symmetrical extrusion in plane strain, J. Mech. Phys. Solids., 3, 189 (1954)CrossRefGoogle Scholar
  22. 22.
    Alexander, J. M., The effect of Coulomb friction in the plane strain compression of a plastic-rigid material, J. Mech. Phys. Solids, 3, 233 (1955)CrossRefGoogle Scholar
  23. 23.
    Johnson, W., Extrusion through square dies of large reduction, J. Mech. Phys. Solids, 4, 191 (1956)CrossRefGoogle Scholar
  24. 24.
    Johnson, W., Sowerby, R. and Haddow, J. B., Plane Strain Slip Line Fields: Theory and Bibliography, Edward Arnold, London (1970)Google Scholar
  25. 25.
    Prager, W., A geometrical discussion of the slip line field in plane plastic flow, Trans. R. Inst. Technol., Stockholm, 65, 27 (1953)Google Scholar
  26. 26.
    Drucker, D. C., Greenberg, W. and Prager, W., The safety factor of an elastic plastic body in plane strain, Trans. Am. Soc. mech. Engrs, 73, J. appl. Mech., 371 (1951)Google Scholar
  27. 27.
    Hill, R., The Mathematical Theory of Plasticity, ch. III, p. 60, Oxford University Press, London (1950)Google Scholar
  28. 28.
    Gvozdev, A. A., The determination of the value of the collapse load for statically indeterminate systems undergoing plastic deformation (translated by R. M. Haythornthwaite), Int. J. mech. Sci., 1, 322 (1960)CrossRefGoogle Scholar
  29. 29.
    Johnson, W. and Mellor, P. B., Engineering Plasticity, ch. 13, p. 415, Van Nostrand Reinhold, London (1973)Google Scholar
  30. 30.
    Kudo, H., Study on forging and extrusion. Part I—Analysis on plane strain problems, Koku-Kenkyu-sho Shuho, Tokyo University, Tokyo, Japan, 1 (1), 37 (1958)Google Scholar
  31. 31.
    Kudo, H., Some analytical and experimental studies of axisymmetric cold forging and extrusion, Parts I and II, Int. J. mech. Sci., 2, 102; 3, 91 (1961)Google Scholar
  32. 32.
    Kobayashi, S., Upper bound solution of axisymmetric forming problems-1, presented at the Prod. Engng Conf. of Amer. Soc. mech. Engrs. (May 1963)Google Scholar
  33. 33.
    Thomsen, E. G., Yang, C. T. and Kobayashi, S., Mechanics of Plastic Deformation in Metal Processing, ch. 1, Table 1.1, p. 4, Macmillan, New York (1965)Google Scholar

Copyright information

© R. A. C. Slater 1977

Authors and Affiliations

  • R. A. C. Slater
    • 1
  1. 1.Department of Mechanical EngineeringThe City UniversityLondonUK

Personalised recommendations