Allocation Under Uncertainty: a survey

  • Roger Guesnerie
  • Thierry de Montbrial
Part of the International Economic Association Series book series (IEA)


An extension of the theory of allocation of resources to the case of uncertainty has been realised recently. After the pioneering article of Arrow [2], who with Allais [1] initiated this analysis, the field was explored by Baudier [4], and Debreu [7, 8] whose results have been somewhat generalised by Radner [14]. One can find stimulating discussions about the implications of the theory in Arrow [3], applications in Borch [5] and Hirshleifer [11], or critical comments on various aspects in Drèze [6].


Utility Function General Equilibrium Elementary Event Price System Contingent Claim 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Allais, ‘Généralisation des théories de l’équilibre économique général et du rendement social au cas du risque’, in Econométrie Colloque International XL (Paris: CNRS, 1953).Google Scholar
  2. [2]
    K. J. Arrow, ‘Le rôle des valeurs boursières pour la répartition la meilleure des risques’, pp. 41–7 in Econométrie Colloque International XL (Paris: CNRS, 1953); translated as ‘The Role of Securities in the Optimal Allocation of Risk-Bearing’, Review of Economic Studies vol. XXXI (1964), pp. 91–6.Google Scholar
  3. [3]
    K. J. Arrow, ‘Essays in the Theory of Risk-Bearing’ (Amsterdam: North-Holland, 1970).Google Scholar
  4. [4]
    E. Baudier, ‘L’introduction du temps dans la théorie de l’équilibre général’, Cahiers Économiques (December 1959), pp. 9–16.Google Scholar
  5. [5]
    K. Borch, ‘The Safety Loading of Reinsurance Premiums’, Skandinavisk Aktuarietidskrift vol. XLIII (1960), pp. 163–84.Google Scholar
  6. [6]
    J. Drèze, ‘Market Allocation under Uncertainty’, European Economic Review vol. II (1971), pp. 133–65.Google Scholar
  7. [7]
    G. Debreu, Theory of Value (New York: John Wiley, 1959).Google Scholar
  8. [8]
    G. Debreu, ‘Une économique de l’incertain’, Economie Appliquée vol. 13 (1960).Google Scholar
  9. [9]
    G. Debreu, ‘New Concepts and Techniques for Equilibrium Analysis’, International Economic Review vol. III (1962), pp. 257–73.CrossRefGoogle Scholar
  10. [10]
    R. Guesnerie and J. Y. Jaffray, ‘Optimality of Equilibrium of Plans Prices and Price Expectations’, chapter 5 infra.Google Scholar
  11. [11]
    J. Hirshleifer, ‘Investment Decision under Uncertainty Applications of the State Preference Approach’, Quarterly Journal of Economics vol. LXXX (1966), pp. 252–77.CrossRefGoogle Scholar
  12. [12]
    E. Malinvaud, ‘Decentralized Procedures for Planning’, in Activity Analysis in the Theory of Growth and Planning ed. by E. Malinvaud and M. O. L. Bacharach (London: Macmillan, 1967), pp. 170–208.CrossRefGoogle Scholar
  13. [13]
    T. de Montbrial, ‘Intertemporal General Equilibrium and Interest Rates Theory’, École Polytechnique (1970).Google Scholar
  14. [14]
    R. Radner, ‘Competitive Equilibrium under Uncertainty’, Econometrica vol. XXXVI (1968), pp. 31–58.CrossRefGoogle Scholar
  15. [15]
    R. Radner, ‘Existence of Equilibrium of Plans, Prices and Price Expectations in a Sequence of Markets’, Econometrica vol. XL (1972), pp. 289–303.CrossRefGoogle Scholar
  16. [16]
    L. J. Savage, Foundations of Statistics (New York: John Wiley, 1954).Google Scholar

Copyright information

© International Economic Association 1974

Authors and Affiliations

  • Roger Guesnerie
    • 1
  • Thierry de Montbrial
    • 2
  1. 1.CepremapParisFrance
  2. 2.Ecole Polytechnique and Commissariat du PlanParisFrance

Personalised recommendations