Advertisement

A Macro Model of the Economy for the Explanation of Trend and Business Cycle with Applications to India

  • Gerhard Tintner
  • Gopal Kadekodi
  • M. V. Rama Sastry

Abstract

This is in a sense a continuation of some work undertaken some years ago in an effort to explain both the trend and the business cycle in the United States.1 We propose to construct a dynamic model for this purpose.

Keywords

Latent Root Business Cycle Econometric Model Econometric Method Macro Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adelman, I. and Adelman, F. L., ‘The Dynamic Properties of the Klein-Goldberger Model’, Econometrica, XXVII (October 1959) 596–625.CrossRefGoogle Scholar
  2. [2]
    Anderson, T. W., An Introduction to Multivariate Statistical Analysis, (New York: Wiley, 1958).Google Scholar
  3. [3]
    Basmann, R. L., ‘A Generalized Classical Method of Linear Estimation of Coefficients in a Structural Equation’, Econometrica, XXV (January 1957) 77–83.CrossRefGoogle Scholar
  4. [4]
    Baumol, W., Economic Dynamics, 2nd ed. (New York: Macmillan, 1959).Google Scholar
  5. [5]
    Bellman, R. E., Introduction to Matrix Analysis, (New York: McGraw-Hill, 1960).Google Scholar
  6. [6]
    Christ, C. F., Econometric Models and Methods, (New York: Wiley, 1966).Google Scholar
  7. [7]
    Conlisk, J., ‘The Equilibrium Covariance Matrix of Dynamic Econometric Models’, Journal of the American Statistical Association, LXIV (March 1969) 277–9.CrossRefGoogle Scholar
  8. [8]
    Fisher, F. M., The Identification Problem in Econometrics, (New York: McGraw-Hill 1966).Google Scholar
  9. [9]
    Fisk, P. R., Stochastically Dependent Equations, (New York: Hafner, 1967).Google Scholar
  10. [10]
    Girshik, A. M., ‘On the Sampling Theory of Roots of Determinental Equations’, Annals of Mathematical Statistics, X (1939) 203–24.CrossRefGoogle Scholar
  11. [11]
    Goldberger, A. S., Impact Multipliers and Dynamic Properties of the Klein-Goldberger Model, (Amsterdam: North-Holland, 1959).Google Scholar
  12. [12]
    Goldberger, A. S., Econometric Theory, (New York: Wiley, 1964).Google Scholar
  13. [13]
    Goldberger, A.S., Nagar, A. L. and Odeh, H. S., ‘The Covariance Matrices of Reduced-Form Coefficients and of Forecasts for a Structural Econometric Model’, Econometrica, XXIX (1961) 556–73.CrossRefGoogle Scholar
  14. [14]
    Gruber, J., Oekonometrische Modelle des Cowles-Commission Typs: Bau und Interpretation, (Hamburg: Parey, 1968).Google Scholar
  15. [15]
    Hood, W. C. and Koopmans, T. C., ed. Studies in Econometric Methods, (New York: Wiley, 1953).Google Scholar
  16. [16]
    Johnston, J., Econometric Methods, (New York: McGraw-Hill 1963).Google Scholar
  17. [17]
    Kendall, M. G. and Stuart, A., The Advanced Theory of Statistics, (New York: Hafner, 1966) III.Google Scholar
  18. [18]
    Klein, L. R., An Introduction to Econometrics, (Englewood Cliffs, N.J.: Prentice-Hall, 1962).Google Scholar
  19. [19]
    Leser, C. E. V., Econometric Techniques and Problems, (New York: Hafner, 1966).Google Scholar
  20. [20]
    Malinvaud, E., Statistical Methods in Econometrics, (Amsterdam: North-Holland, 1966).Google Scholar
  21. [21]
    Mann, H. B. and Wald, A., ‘On the Statistical Treatment of Linear Stochastic Difference Equations’, Econometrica, XI (1943) 173–230.CrossRefGoogle Scholar
  22. [22]
    Menges, G., Oekonometrie, (Wiesbaden: Betriebs-Wirtschaflicher Verlag, 1961).CrossRefGoogle Scholar
  23. [23]
    Narashimham, G. V. L., ‘The Asymptotic Theory of Certain Characteristic Roots of Econometric Equation Systems’, Econometrica, XXXVI (Supplement, 1968), 95–7.Google Scholar
  24. [24]
    Theil, H., Economic Forecasts and Policy, 2nd ed. (Amsterdam, North Holland, 1961).Google Scholar
  25. [25]
    Theil, H. and Boot, J. C. G., ‘The Final Form of Econometric Equation Systems’, Review of the International Statistical Institute, XXX (1962) 136–52.CrossRefGoogle Scholar
  26. [26]
    Tinbergen, J., Econometrics, (Philadelphia: Blakiston, 1951).Google Scholar
  27. [27]
    Tintner, G., ‘A Simple Theory of Business Fluctuations’, Econometrica, X (July–October 1942) 317–20.CrossRefGoogle Scholar
  28. [28]
    Tintner, G., ‘The Simple Theory of Business Fluctuations: A Tentative Verification’, Review of Economics and Statistics, XXVI (1944) 148–57.CrossRefGoogle Scholar
  29. [29]
    Tintner, G., ‘Une Theorie ‘Simple’ des Fluctuations Economiques’, Revue d’économie politique, LVII (1947), 209–15.Google Scholar
  30. [30]
    Tintner, G., Econometrics, (New York: Wiley, 1952).Google Scholar
  31. [31]
    Wold, H. O. and Jureen, L., Demand Analysis, (New York: Wiley, 1953).Google Scholar
  32. [32]
    Zellner, A. and Theil, H., ‘Three-Stage Least Squares’, Econometrica, XXX (1962) 54–78.CrossRefGoogle Scholar

Copyright information

© Gerhard Tintner, Gopal Kadekodi and M. V. Rama Sastry 1974

Authors and Affiliations

  • Gerhard Tintner
    • 1
  • Gopal Kadekodi
    • 2
  • M. V. Rama Sastry
    • 3
  1. 1.Institut für OekonometrieTechnische HochsculeWienAustria
  2. 2.Institute of Economic GrowthDehli UniversityIndia
  3. 3.School of BusinessChico State CollegeChicoUSA

Personalised recommendations