Skip to main content

Summary

The temperature rise, due to the passage of a grinding wheel, may have detrimental effects on the surface integrity of the outermost layers of the ground workpiece. In this contribution, a comparison has been made of various models, worked out for evaluating the heat affected zone. The predicted temperature fields and theoretically determined heat affected zones have been compared with experimental data.

From this evaluation, some factors have been put forward, which are relevant for practical grinding work. Of special interest in this respect is the work speed. In some cases, especially cut-off operations, also the infeed may become quite important. It might be possible indeed to increase significantly the efficiency of the operation, with respect to thermal damage by evacuating a large quantity of heat, simply by removing fast enough the heated-up material so as to minimize the heat conduction into the workpiece bulk material.

This kind of analysis may indicate further trends in cut-off operations, in high-speed grinding and in abrasive machining operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. C. JAEGER (1942). Moving sources of heat and the temperature at sliding contacts. Journ. and Proc. of the Royal Soc. of N. South Wales, 76 (3).

    Google Scholar 

  2. J. OUTWATER and M. C. SHAW (1952). Surface temperatures in grinding, Trans. ASME.

    Google Scholar 

  3. R. S. HAHN (1956). The relation between grinding conditions and thermal damage in the workpiece, Trans. ASME, May.

    Google Scholar 

  4. N. DES RUISSEAUX (1968). Thermal aspects of the grinding process, Ph.D. thesis, Univ. of Cincinnati.

    Google Scholar 

  5. SAUER (1971). Thermal aspects of grinding, Ph.D. thesis, Carnegie-Mellon Univ. Pittsburgh.

    Google Scholar 

  6. K. TAKAZAWA (1966). Effects of grinding variables on the surface of hardened steel, Bull. Jap. Soc. of Prec. Eng., 2 (1).

    Google Scholar 

  7. G. WERNER (1971). Kinematik und Mechanik des Schleifprozesses, Ph.D. thesis, T. H. Achen.

    Google Scholar 

  8. G. WERNER and M. DEDERICHS (1972). Spanbildungsprozess und Temperatur beeinflüssung des Werkstücks beim Schleifen, Industrieanzeiger, 94 (98).

    Google Scholar 

  9. D. G. LEE, R. D. ZERKLE and N. R. Des RUISSEAUX. An experimental study of thermal aspects of cylindrical plunge grinding. Trans. ASME, paper 71-WA/Prod. 4.

    Google Scholar 

  10. G. W. BOKUCHAVA (1963). Cutting temperatures in grinding, Russian Engineering Journal, 43 (11).

    Google Scholar 

  11. SNOEYS and I.-CHIH-WANG (1969). Analysis of the static and dynamics stiffness on the grinding wheel surface, M. T.D.R. Conference.

    Google Scholar 

  12. OKAMURA and NAKAJIMA (1972). The surface generation mechanics in the transitional cutting process, Proc. of the Int. Grinding Conference Pittsburgh, April (ed. M. C. Shaw).

    Google Scholar 

  13. BROWN, SAITO and SHAW (1971). Local elastic deflections in grinding. CIRP Annals, 19 (1).

    Google Scholar 

  14. MAKINO, SUTO and FOKUSHIMA (1966). An experimental investigation of the grinding process, Journal of Mech. Laboratory of Japan, 12 (1), 17.

    Google Scholar 

  15. MALKIN (1968). The attritious and fracture wear of grinding wheels, Sc.D thesis, MIT.

    Google Scholar 

  16. SATO (1961). Grinding temperatures, Bull. of Jap. Soc. of Grinding Eng., nr. 1.

    Google Scholar 

  17. D. G. LEE (1971). An experimental study of thermal aspects of grinding, Ph.D. thesis, Univ. of Cincinnati.

    Google Scholar 

  18. S. ESHGHY. Thermal aspects of the abrasive cut-off operation, Part 1, Theoretical analysis, Trans. ASME, 66-WA/Prod. 21.

    Google Scholar 

  19. S. ESHGHY (1967). Thermal aspects of the abrasive cut-off operation? Part 2, Partition functions and optimum cutoff, Trans. ASME.

    Google Scholar 

  20. V. V. KOROLEV. Temperature distribution calculations during abrasive machining, Machines and Tooling, 42 (4).

    Google Scholar 

  21. T. STORM (1970). Adaptive control in cutoff grinding, M. T.D.R. Conference, vol. A.

    Google Scholar 

  22. K. TAKAZAWA (1972). Thermal aspects of the grinding operation, Industrial Diamond Review, April, p. 143.

    Google Scholar 

  23. A. DECNEUT (1971). Microhardness variations in ball bearing rings, CRIF-Instituut voor Werktuigkunde, Leuven, Jan.

    Google Scholar 

  24. R. SNOEYS (1966). Instabiliteit van het slijpproces, Ph.D. thesis, Leuven.

    Google Scholar 

  25. GUH RING (1967). Hochleistungsschleifen, Ph.D. thesis, T. H. Aachen.

    Google Scholar 

  26. R. S. HAHN (1962). On the nature of the grinding process, M. T.D.R. Conference.

    Google Scholar 

  27. R. SNOEYS (1965). Het onderzoek van de slijpbewerking, Het Ingenieursblad, 34, (11–12).

    Google Scholar 

  28. R. S. HAHN and LINDSAY (1967). On the effects of real area of contact and normal stresses in grinding, CIRP Annals, 15.

    Google Scholar 

  29. M. C. SHAW (1967). Mechanics of the abrasive cutoff operation, Trans. ASME, paper 11-WA/ Prod. 13.

    Google Scholar 

  30. T. STORM. Internal report of the University of Technology, Delft, The Netherlands.

    Google Scholar 

  31. T. RUGGEBERG (1972). High-speed and high-efficiency abrasive cutting, a challenge to circular cold sawing, Proc. of the Int. Grinding Conference. Pittsburgh, April (ed. M. C. Shaw).

    Google Scholar 

  32. F. VAN DIJCK (1973) Physico-Mathematical analysis of the EDM Process, Ph.D. thesis Univ. of Leuven.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1974 Macmillan Publishers Limited

About this chapter

Cite this chapter

Maris, M., Snoeys, R. (1974). Heat Affected Zone in Grinding Operations. In: Koenigsberger, F., Tobias, S.A. (eds) Proceedings of the Fourteenth International Machine Tool Design and Research Conference. Palgrave, London. https://doi.org/10.1007/978-1-349-01921-2_85

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-01921-2_85

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-01923-6

  • Online ISBN: 978-1-349-01921-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics