Advertisement

A Note on the Histology of Cement Lines

  • L. Sokoloff

Abstract

The so-called ‘cement line’ that demarcates the edge of osteones is a well-documented locus minoris resistentiae in cortical bone (Dempster and Coleman, 1961; Piekarski, 1970). Unlike certain other histological features of bones and joints, it has not received rigorous anatomical scrutiny. It seems worthwhile to call attention to the structure of the cement line in view of the mechanical importance attributed to it in promoting or arresting crack propagation.

Keywords

Articular Cartilage Bone Matrix Ground Substance Amorphous Calcium Phosphate Cement Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amprino, A. 1967: Bone histophysiology. Guy’s Hosp. Rep. 116: 51–69.Google Scholar
  2. Boyde, A. 1972: Scanning electron microscope studies of bone. In ‘The Biochemistry and Physiology of Bone’ (Ed. C.H. Bourne), 2nd ed. Academic Press, New York and London, pp. 259–310.CrossRefGoogle Scholar
  3. Cameron, D.A. 1972: The ultrastructure of bone. In ‘The Biochemistry and Physiology of Bone’ (Ed. C.H. Boume), 2nd ed. Academic Press, New York and London, pp. 191–236.CrossRefGoogle Scholar
  4. Chamay, A. 1970: Mechanical and morphological aspects of experimental overload and fatigue in bone. J. Biomechanics 3: 263–270.CrossRefGoogle Scholar
  5. Cohen, J., and Harris, W.H. 1958: The three-dimensional anatomy of haversian systems. J. Bone Joint Surg. 40A: 419–434.Google Scholar
  6. Currey, J.D. 1969: The relationship between the stiffness and the mineral content of bone. J. Biomechanics 2: 477–480.CrossRefGoogle Scholar
  7. Dempster, W.T., and Coleman, R.F. 1961: Tensile strength of bone along and across the grain. J. Appl. Physiol. 16: 355–366.Google Scholar
  8. Fawns, H.T., and Landells, J.W. 1953: Histochemical studies of rheumatic conditions. I. Observations on the fine structures of the matrix of normal bone and cartilage. Ann. Rheumat. Dis. 12: 105–113.CrossRefGoogle Scholar
  9. Green, W.T., Jr., Martin, G.N., Eanes, E.D., and Soxoloff, L. 1970: Microradiographic study of the calcified layer of articular cartilage. Arch. Path. 90: 151–158.Google Scholar
  10. Herring, G.M. 1972: The organic matrix of bone. In ‘The Biochemistry and Physiology of Bone’ (Ed. C.H. Bourne), 2nd ed. Academic Press, New York and London, pp. 127–189.CrossRefGoogle Scholar
  11. Johnson, L.C. 1966: The kinetics of skeletal remodeling. Birth Defects, Original Article Series 2: 66–142.Google Scholar
  12. Mellors, R.C. 1964: Electron probe microanalysis. 1. Calcium and phosphorus in normal human cortical bone. Lab. Invest. 13: 183–195.Google Scholar
  13. Mital, M.A. 1970: Biomechanical characteristics of the human hip joint and a technique of homotransplantation of its articular cartilage. M.Sc. Thesis, University of Strathclyde, Glasgow.Google Scholar
  14. Ogston, A.G. 1970: The biological functions of the glycosaminoglycans. In ‘Chemistry and Molecular Biology of the Intercellular Matrix’ (Ed. E.A. Balazs ). Academic Press, New York and London, Vol 3, 1231–1253.Google Scholar
  15. Ohnsorge, J., Schütt, G., and Holm, R. 1970: Rasterelektronenmikroskopische Untersuchungen des gesunden und des arthrotischen Gelenkknorpels. Z. Orthop. 108: 268–277.Google Scholar
  16. Philipson, B. 1965: Composition of cement lines in bone. J. Histochem. 13: 270–281.Google Scholar
  17. Piekarski, K. 1970: Fracture of bone. J. Appl. Physics 41: 215–223.CrossRefGoogle Scholar
  18. Pizzolato, P., and Lillie, R.D. 1968: The impregnation of bone and pathologic calcification by metal salts and their recognition by unoxidized hematoxylin. Histochemie 16: 333–338.CrossRefGoogle Scholar
  19. Pommer, G. 1915: Zur Kenntnis der Ausheilungsbefunde bei Arthritis deformans, besonders im Bereiche ihrer Knorpelsuren, nebst einem Beitrag zur Kenntnis der lakunären Knorpelresorption. Virchows Arch. 219: 261–278.CrossRefGoogle Scholar
  20. Robinson, R.A. 1960: Chemical analysis and electron microscopy of bone. In ‘Bone as a Tissue’. (Eds. K. Rodahl, J.T. Nicholson, and E.M. Brown Jr.). McGraw-Hill, New York, pp. 186–250.Google Scholar
  21. schmidt, W.J. 1959: Grenzscheiden der Lakunen und Kittlinien des Knochengewebes. Polarisationsoptische Analyse kollagenfreier Kongorotgefärbter Schliffe. Z. Zellforsch. 50: 275–296.CrossRefGoogle Scholar
  22. Smith, J.W. 1963: Age changes in the organic fraction of bone. J. Bone Joint Surg. 45B: 761–769.Google Scholar
  23. Sokoloff, L. 1956: Natural history of degenerative joint disease in small laboratory animals. 1. Pathologic anatomy of degenerative joint disease in mice. A.M.A. Arch. Path. 62: 118–128.Google Scholar
  24. Tonna, E.A. 1959: The histochemical nature and possible significance of the subperiosteal reversal lines of aging rat femora. J. Gerontol. 14: 425–429.CrossRefGoogle Scholar
  25. Weidenreich, F. 1930: Das Knochengewebe. In ‘Handbuch der mikroskopischen Anatomie des Menschen’. (Ed. W. von Möllendorff). Springer, Berlin. Vol. 2, Part 2, pp. 391–520.Google Scholar
  26. Weinmann, J. P., and Sicher, H. 1947: ‘Bone and Bones. Fundamentals of Bone Biology’. C.V. Mosby, St. Louis, pp. 464.Google Scholar
  27. Welch, D.O. 1970: The composite structure of bone and its response to mechanical stress. Recent Adv. Eng. Sci. 5: 245–262.Google Scholar

Copyright information

© Bioengineering Unit, University of Strathclyde 1973

Authors and Affiliations

  • L. Sokoloff
    • 1
  1. 1.Laboratory of Experimental PathologyNational Institutes of HealthBethesdaUSA

Personalised recommendations