Salinity and the Whole Animal

  • W. V. Macfarlane


Land mammals have neuroendocrine controls and cellular pumping mechanisms to maintain inter- and intracellular electrolyte concentrations. Sodium conservation is highly developed. In the ocean and in arid hot areas the salinity of water reaches four or more times that of the body fluids. Either such water is not consumed or kidneys are developed to excrete the surplus electrolyte. Amongst sheep and cattle, 180–220 mmoll-1 NaCl is the concentration chronically tolerated in drinking water. Sheep and goats do not drink in winter, so that saline water is not a nutritional problem, until summer. Camels live satisfactorily when drinking 1850 mmoll-1 NaCl (5.5%) but sheep accept only 220 mmoll-1 NaCl (1.3%) Animals evolved in the desert (jerboas, quokkas, camels) are more salt tolerant than swamp-based animals like bovids. There are renal and cellular adjustments to the high salt intakes but all members of a breed or species do not make the adjustment as well as others.


Saline Water Extracellular Fluid Sweat Gland Salt Intake Glomerular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, B., Dolman, M. F., and Olsson, K. (1969). Acta Physiol. Scand. 75, 496.CrossRefGoogle Scholar
  2. Barnes, H. (1954). J. exp. Biol. 31, 582.Google Scholar
  3. Barry, R. J. C., Eggerton, J., and Smyth, D. (1969). J. Physiol. 204, 299.CrossRefGoogle Scholar
  4. Blair-West, J., Cain, M., Catt, K., Coghlan, J. P., Denton, D. A., Funder, J. W., Scroggins, B. A., and Wright, R. D. (1968a). Progress in Endo-crinology. Experpta Med. Int. Cong. Series No. 184, 276.Google Scholar
  5. Blair-West, J. R., Coghlan, J. P., Denton, D. A., Goding, J. R., Wintour, M., and Wright, R. D. (1968b). Nature (Lond.) 217, 922.CrossRefGoogle Scholar
  6. Clark, G. (1969). World Prehistory. p. 122. Cambridge University Press.Google Scholar
  7. Copp, D. H. (1965). Recent Progress Horm. Res. 20, 64.Google Scholar
  8. Curran, P. F., and Solomon, A. K. (1957). J. gen. Physiol. 41, 143.CrossRefGoogle Scholar
  9. Danks, D. M., Webb, D. W., and Allen, Jean (1962). Brit. med. J. 2, 287.CrossRefGoogle Scholar
  10. Denton, D. A. (1967). In Handbook of Physiology. (Ed. C. E. Code.) 6, 433. Am. Physiol. Soc., Washington.Google Scholar
  11. Denton, D. A. (1969). Nut. Abst. Rev. 39, 1943.Google Scholar
  12. Dorn, J., and Porter, J. C. (1970). Endocrinol. 86, 1112.CrossRefGoogle Scholar
  13. Edelman, I. S. (1967). Amer. J. Physiol. 213, 954.Google Scholar
  14. Edelman, I. S., and Liebman, J. (1959). Amer. J. Med. 27, 256.CrossRefGoogle Scholar
  15. Fänge, R., and Schmidt-Nielsen, K. (1958). Amer. J. Physiol. 195, 321.Google Scholar
  16. Garner, R. J. (1961). Veterinary Toxicology. Bailliere, Tindall and Cox, London.Google Scholar
  17. Gauer, O. H. (1967). Les Concepts de Claude Bernard sur le Milieu Interieur. p. 29. Masson, Paris.Google Scholar
  18. Handler, J. S., Butcher, R. W., and Orloff, J. (1965). J. biol. Chem. 240, 4524.Google Scholar
  19. Harma, S., North, K. A. K., Maclntyre, I., and Fraser, R. (1961). Brit. med. J. 2, 1253.CrossRefGoogle Scholar
  20. Harvey, G. R. (1957). Lancet, March 9th, 533.Google Scholar
  21. Heller, V. G. (1933). Bull. Okla. Agric. Exp. Sta. No. 217.Google Scholar
  22. Hoffman, B. F., and Cranefield, P. F. (1960). Electrophysiology oldie Heart. McGraw-Hill, New York.Google Scholar
  23. Howard, D. A., Burdin, H. L., and Lampkin, G. H. (1962). J. agric. Sci. 59, 251.CrossRefGoogle Scholar
  24. Hubbard, J. T., Llinas, R., and Quastel, D. M..J (1969). Electrophysiological Analysis of Synaptic Transmission. Arnold, London.Google Scholar
  25. Johnson, K. G. (1969). Thesis, University of Queensland.Google Scholar
  26. Jones, G. B., Potter, B. J., and Reid, C. S. W. (1970). Aust. J. agric. Res. 21, 927.CrossRefGoogle Scholar
  27. Katzman, R. (1966). Ann. Rev. Med. 17, 197.CrossRefGoogle Scholar
  28. Krogh, A. (1939). Osmotic Regulation of Aquatic Animals. Cambridge University Press.Google Scholar
  29. Laddell, W. S. (1947). Brit. med. Bull. 5, 9–12.Google Scholar
  30. Laddell, W. S. (1965). In Physiology of Human Survival. (Eds. O. G. Edholm and A. L. Bacharach.) p. 267. Academic Press, New York.Google Scholar
  31. Macallum, A. B. (1926). Physiol. Rev. 6, 316.Google Scholar
  32. Macfarlane, W. V. (1964). Handbook of Physiology-Environment. 4, 509. Am. Physiol. Soc., Washington.Google Scholar
  33. Macfarlane, W. V., and Howard, B. (1970). The Physiology of Digestion and Metabolism in Ruminants. Oriel Press, Aberdeen.Google Scholar
  34. Macfarlane, W. V., Howard, B., and Siebert, B. D. (1967). Aust. J. agric. Res. 18, 947.CrossRefGoogle Scholar
  35. Macfarlane, W. V., Howard, B., Skinner, S. A., and Scroggins, B. A. (1968). Proc. 14th Int. Physiol. Congr. p. 854.Google Scholar
  36. Macfarlane, W. V., Kinne, R., Walmsley, C. M., Siebert, B. D., and Peter, D. (1967). Nature (Lond.) 214, 979.CrossRefGoogle Scholar
  37. McCance, R. A., Crosfill, J. W. L., Ungley, G. C., and Widdowson, E. M. (1951). Med. Res. Council Report, No. 291.Google Scholar
  38. Moule, G. R. (1945). Aust. Vet. J. 21, 37.CrossRefGoogle Scholar
  39. Ohman, A. F. S. (1939). Aust. Vet. J. 15, 37.CrossRefGoogle Scholar
  40. Parsons, D. S. (1967) Brit. med. Bull. 23, 252.Google Scholar
  41. Pierce, A. W. (1957). Vet. Rev. Annot. 3, 37.Google Scholar
  42. Pierce, A. W. (1968). Aust. J. agric. Res. 19, 577.CrossRefGoogle Scholar
  43. Potter, B. J. (1961). Aust. J. agric. Res. 12, 440.CrossRefGoogle Scholar
  44. Potter, B. J. (1963). Aust. J. agric. Res. 14, 518.CrossRefGoogle Scholar
  45. Potter, B. J. (1966). J. Physiol. (Lond.) 184, 605.CrossRefGoogle Scholar
  46. Potter, B. J. (1968). J. Physiol. (Lond.) 194, 435.CrossRefGoogle Scholar
  47. Potter, B. J. (1969). Water Res. Foundn. Aust., Report No. 29, 8.1.Google Scholar
  48. Richter, C. (1956). L’instinct dans le Comportement des Animaux et de l’Homme. Masson, Paris.Google Scholar
  49. Schmidt, U., and Dubach, U. C. (1970). Nephron. 7, 447.CrossRefGoogle Scholar
  50. Schmidt-Nielsen, K. (1960). Circulation, 21, 955.CrossRefGoogle Scholar
  51. Schmidt-Nielsen, K. (1964). Desert Animals. Oxford University Press.Google Scholar
  52. Skou, J. C. (1960). Biochem. Biophys. Acta. 42, 6.CrossRefGoogle Scholar
  53. Skou, J. C. (1965). Physiol. Rev. 45, 596.Google Scholar
  54. Tosteson, D. C. (1964). The Cellular Function of Membrane Transport. Prentice-Hall, New York.Google Scholar
  55. Udall, R. H. (1959). Amer. J. vet. Res. 23, 1241.Google Scholar
  56. Underwood, E. J. (1966). The Mineral Nutrition of Livestock. FAO and Comm. Agr. Bureau, Rome.Google Scholar
  57. Ussing, H. H., Kruhoffer, P., Thaysen, J. H., and Thorn, N. A. (1960). Handbuch der Experimentallen Pharmakologie. Springer Verlag, Berlin.Google Scholar
  58. Weeth, H. J., Haverland, L. H., and Cassard, D. W. (1960). J. animal. Sci. 19, 845.Google Scholar
  59. Wesson, L. O. (1957). Medicine, 36, 281.CrossRefGoogle Scholar
  60. Wilson, A. D. (1966). Aust. J. agric. Res. 17, 155.CrossRefGoogle Scholar
  61. Wilson, A. D., Leigh, J. H., and Mulham, W. E. (1969). Aust. J. agric. Res. 20, 1123.CrossRefGoogle Scholar
  62. Wolf, C. (1964). Psychonomic Sci. 1, 211.CrossRefGoogle Scholar

Copyright information

© Australian Academy of Science 1971

Authors and Affiliations

  • W. V. Macfarlane
    • 1
  1. 1.Waite Agricultural Research InstituteUniversity of AdelaideAustralia

Personalised recommendations