Skip to main content

Part of the book series: Biological Council ((BCSDA))

  • 13 Accesses

Abstract

This contribution concerns tissues prepared from the mammalian brain, with minimal damage to cell-structure. Such tissues constitute the simplest level at which the multiplicity of control mechanisms which operate between the cells of neural systems, are exhibited directly: That is, without a transformation of category. A major method of exhibiting control mechanisms is to cause a system to alter its level of activity. In the brain this can readily be caused by some form of excitation. Impinging on a portion of cerebral tissue in situ are two types of input to which the tissue reacts; (i) electrical, by the ion movements of the nerve impulse; and (ii) humoral, from adjacent cells or more distant parts of the body but arriving finally as a chemical substance and by diffusion. Input of each of these types can be brought to bear on the isolated tissue, by electrical stimulation and by chemical additions to the fluid environment of the tissue. This is the order in which responses by the tissue are now to be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cyclic AMP:

3′,5′-cyclic adenosine monophosphate.

References

  1. Kakiuchi, S., Rall, T. W. and Mcllwain, H.; J. Neurochem.; 16, (1969) 485.

    Article  Google Scholar 

  2. Mcllwain, H. and Bachelard, H. S.; Biochemistry and the Central Nervous System; Churchill, London, (1971) p. 41, 67.

    Google Scholar 

  3. Sattin, A. and Rall, T. W.; Mol. Pharmacol.; 6, (1970) 13.

    Google Scholar 

  4. Rall, T. W. and Gilman, A. G.; Neurosci. Res. Progr. Bull.; 8, (1970) 221.

    Google Scholar 

  5. Thomas, J.; Biochem. J.; 66, (1957) 655.

    Article  Google Scholar 

  6. Santos, J. N., Hempstead, K. W., Kopp, L. E. and Miech, R. P.; J. Neurochem.; 15, (1968) 367.

    Article  Google Scholar 

  7. Shimizu, H., Daly, J. W. and Crevling, C. R.; J. Neurochem.; 16, (1969) 1609.

    Article  Google Scholar 

  8. Ditzion, B. R., Paul, M. I. and Pauk, G. L.; Pharmacology; 3, (1970) 25.

    Article  Google Scholar 

  9. Paul, M. I., Pauk, G. L. and Ditzion, B. R.; Pharmacology; 3, (1970) 148.

    Article  Google Scholar 

  10. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X. and Schultz, D. W.; J. biol. Chem.; 239, (1964) 18.

    Google Scholar 

  11. Mcllwain, H. and Snyder, H. S.; J. Neurochem.; 17, (1970) 521.

    Article  Google Scholar 

  12. Chase, T. N., Katz, R. I. and Kopin, I. J.; J. Neurochem.; 16, (1969) 607.

    Article  Google Scholar 

  13. Srinivasan, V., Neal, M. J. and Mitchell, J. F.; J. Neurochem.; 16, (1969) 1235.

    Google Scholar 

  14. Kakiuchi, S. and Rall, T. W.; Mol. Pharmacol.; 4, (1968) 367.

    Google Scholar 

  15. Kakiuchi, S. and Rall, T. W.; Mol. Pharmacol.; 4, (1968) 379.

    Google Scholar 

  16. Gibson, I. and Mcllwain, H.; J. Physiol.; 176, (1965) 261.

    Article  Google Scholar 

  17. Mcllwain, H.; Br. med. Bull.; 24, (1968) 174.

    Google Scholar 

  18. Shimizu, H., Creveling, C. R. and Daly, J.; Proc. Nat. Acad. Sci. U.S.A.; 65, (1970) 1033.

    Article  Google Scholar 

  19. Shimizu, H. and Daly, J.; Biochim. biophys. Acta.; 222, (1970) 465.

    Article  Google Scholar 

  20. Minard, F. N. and Davis, R. V.; J. biol. Chem.; 237, (1962) 1283.

    Google Scholar 

  21. Hillman, H. H., Campbell, W. J. and Mcllwain, H.; J. Neurochem.; 10, (1971) 325.

    Article  Google Scholar 

  22. Butcher, R. W. and Sutherland, E. W.; J. biol. Chem.; 237, (1962) 1244.

    Google Scholar 

  23. Cheung, W. Y.; Biochemistry; 6, (1967) 1079.

    Article  Google Scholar 

  24. Brooker, G., Thomas, L. J. and Appleman, M. M.; Biochemistry; 7, (1968) 4177.

    Article  Google Scholar 

  25. Cheung, W. Y.; Biochem. biophys. Res. Comm.; 38, (1970) 533.

    Article  Google Scholar 

  26. Rall, T. W. and Sutherland, E. W.; J. biol. Chem.; 232, (1968) 1065.

    Google Scholar 

  27. Pull, I. and Mcllwain, H.; (1971) Unpublished work.

    Google Scholar 

  28. Douglas, W. W., Poisner, A. M. and Rubin, R. P.; J. Physiol.; 179, (1965) 130.

    Article  Google Scholar 

  29. Douglas, W. W. and Poisner, A. M.; J. Physiol.; 183, (1966) 249.

    Article  Google Scholar 

  30. Siggins, G. R., Hoffer, B. J. and Bloom, F. E.; Science; 165, (1969) 1018; ibid.; 166, (1969) 519.

    Google Scholar 

  31. Hoffer, B. J., Siggins, G. R. and Bloom, F. E.; Brain Res.; 25, (1971) 523.

    Article  Google Scholar 

  32. Haynes, R. C., Koritz, S. B. and Peron, F. G.; J. biol. Chem.; 234, (1959) 1421.

    Google Scholar 

  33. Mcllwain, H.; ‘Chemical Exploration of the Brain’; Amsterdam, Elsevier (1963) p. 78–9.

    Google Scholar 

  34. Swanson, P. D.; J. Neurochem.; 13, (1966) 229.

    Article  Google Scholar 

  35. Tao, M. and Schweiger, M.; J. Bact.; 102, (1970) 138.

    Google Scholar 

  36. Mcllwain, H.; Essays in Biochemistry; 7, (1971) in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1971 Institute of Biology Endowment Fund

About this chapter

Cite this chapter

McIlwain, H. (1971). Cyclic Amp and Tissues of the Brain. In: Rabin, B.R., Freedman, R.B. (eds) Effects of Drugs on Cellular Control Mechanisms. Biological Council. Palgrave, London. https://doi.org/10.1007/978-1-349-01321-0_14

Download citation

Publish with us

Policies and ethics