Microelectrophoretic studies on neurones in the Clarke’s column

  • M. Randić
  • N. R. Myslinski


The response of mammalian central neurones to various drugs applied into their environment by microelectrophoresis has been widely studied (Curtis and Johnston, 1974; Krnjević, 1974). We have studied the chemical sensitivity of individual Clarke’s column neurones to putative acidic amino acid neuro­transmitters (l-glutamic and l-aspartic acids) and acetylcholine (ACh). This work was supplemented by pharmacological studies using L-glutamic acid diethylester and l-methionine-dl-sulphoximine as possible excitatory amino acid antagonists.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balcar, V. J. and Johnston, G. A. R. (1973). ‘High affinity uptake of transmitters: studies on the uptake of L-aspartate, GABA, L-glutamate and glycine in cat spinal cord’, J. Niurochem., 20, 529–539CrossRefGoogle Scholar
  2. Bradley, P. B. and Dray, A. (1972). ‘Short-latency excitation of brain stem neurones in the rat by acetylcholine’, Br. J. Pharmac., 45, 372–374CrossRefGoogle Scholar
  3. Curtis, D. R. (1964). ‘Microelectrophoresis’, in Physical Techniques in Biological Research. Vol. 5 ( Nastuk, W. L., Ed.) 144–190, Academic Press, New YorkGoogle Scholar
  4. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebé cis, A. K. and Watkins, J. C. (1972). ‘Excitation of mammalian central neurones by acidic amino acids’, Brain Res., 41, 283–301PubMedCrossRefGoogle Scholar
  5. Curtis, D. R. and Eccles, R. M. (1958). ‘The excitation of Renshaw cells by pharmacological agents applied electrophoretically’, J. Physiol., Lond., 141, 435–445PubMedPubMedCentralCrossRefGoogle Scholar
  6. Curtis, D. R. and Johnston, G. A. R. (1974). ‘Amino acid transmitters in the mammalian central nervous system’, Ergebn. Physiol., 69, 97–188PubMedGoogle Scholar
  7. Curtis, D. R., Phillis, J. W. and Watkins, J. C. (1960). ‘The chemical excitation of spinal neurones by certain acidic amino acids’, J. Physiol., Lond., 150, 656–682PubMedPubMedCentralCrossRefGoogle Scholar
  8. Curtis, D. R., Phillis, J. W. and Watkins, J. C. (1961). ‘Cholinergic and non-cholinergic transmission in the mammalian spinal cord’, J. Physiol., Lond., 158, 296–323PubMedPubMedCentralCrossRefGoogle Scholar
  9. Curtis, D. R. and Watkins, J. C. (1963). ‘Acidic amino acids with strong excitatory actions on mammalian neurones’, J. Physiol., Lond., 166, 1–14PubMedPubMedCentralCrossRefGoogle Scholar
  10. Davidoff, R. A., Graham, L. T. Jr., Shank, R. P., Werman, R. and Aprison, M. H. (1967). ‘Changes in amino acid concentrations associated with loss of spinal interneurons’, J. Neurochem., 14, 1025–1031CrossRefGoogle Scholar
  11. Duggan, A. W. (1974). ‘The differential sensitivity to L-glutamate and L-asparatate of spinal inter-neurones and Renshaw cells’, Expl Brain Res., 19, 522–528CrossRefGoogle Scholar
  12. Duggan, A. W. and Johnston, G. A. R. (1970). ‘Glutamate and related amino acids in cat spinal roots, dorsal root ganglia and peripheral nerves’, J. Neurochem., 17, 1205–1208PubMedCrossRefGoogle Scholar
  13. Engberg, I. and Ryall, R. W. (1966). ‘The inhibitory action of noradrenaline and other monoamines on spinal neurones’, J. Physiol., Lond., 185, 298–322PubMedPubMedCentralCrossRefGoogle Scholar
  14. Feldberg, W. and Vogt, M. (1948). Acetylcholine synthesis in different regions of the central nervous system’, J. Physiol., Lond., 107, 372–381PubMedPubMedCentralCrossRefGoogle Scholar
  15. Feldberg, W., Gray, J. A. B. and Perry, W. L. M. (1953). ‘Effects of close arterial injections of acetylcholine on the activity of the cervical spinal cord of the cat’, J. Physiol., Lond., 119, 428–438PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fernandez de Molina, A., Gray, J. A. B. and Palmer, J. F. (1958). ‘Effects of acetylcholine on the lumbo sacral cord of the cat’, J. Physiol., Lond., 141, 169–176CrossRefGoogle Scholar
  17. Galindo, A., Krnjevie, K. and Schwartz, S. (1967). ‘Microiontophoretic studies on neurones in the cuneate nucleus’, J. Physiol., Lond., 192, 359–377PubMedPubMedCentralCrossRefGoogle Scholar
  18. Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H. (1967). ‘Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, y-aminobutyric acid, glycine and glutamine’, J. Neurochem., 14, 465–472PubMedCrossRefGoogle Scholar
  19. Haldeman, S., and McLennan, H. (1972). ‘The antagonistic action of glutamic acid diethylester towards amino acid-induced and synaptic excitations of central neurones’, Brain Res., 45, 393–400PubMedCrossRefGoogle Scholar
  20. Johnson, J. L. and Aprison, M. H. (1970). ‘The distribution of glutamic acid, a transmitter candidate, and other amino acids in the dorsal sensory neurone of the cat’, Brain Res., 24, 285–292PubMedCrossRefGoogle Scholar
  21. Johnston,G.A.R.(1968). ‘The intraspinal distribution of some depressant amino acids’,J.Neuro-cbem., 15,1013–1017Google Scholar
  22. Kasa, P., Mann, S. P. and Hebb, C. O. (1970). ‘Localization of choline acetyltransferase’, Nature, 226, 812–816PubMedCrossRefGoogle Scholar
  23. Krnjevié, K. (1971). ‘Microiontophoresis’, in: Methods in Neurochemistry Vol. 1 ( Fried, R., Ed.) 129–172, Marcel Dekker, New York.Google Scholar
  24. Krnjevié, K. (1974). ‘Chemical nature of synaptic transmission in vertebrates’, Physiol. Rev., 54, 418–540Google Scholar
  25. Krnjevié, K. and Phillis, J. W. (1963). ‘Iontophoretic studies of neurones in the mammalian cerebral cortex’, J. Physiol., Lond., 165, 274–304CrossRefGoogle Scholar
  26. Maclntosh, F. C. (1941). ‘The distribution of acetylcholine in the peripheral and the central nervous system’, y. Physiol., Lond., 99, 436–442CrossRefGoogle Scholar
  27. McLennan, H., Huffman, R. D. and Marshall, K. C. (1968). ‘Patterns of excitation of thalamic neurones by amino-acids and by acetylcholine’; Nature, 219, 387–388PubMedCrossRefGoogle Scholar
  28. Myslinski, N. R., Randié, M. and Ledgere, M. E. (1974). ‘Chemical sensitivity of the dorsal spinocerebellar tract neurones in relation to various sensory inputs’, Ann. Meet. Soc. Neurosci. Abstract 481Google Scholar
  29. Odutola, A. B. (1972). ‘The organization of cholinesterase-containing systems of the monkey spinal cord’, Brain Res., 39, 353–368PubMedCrossRefGoogle Scholar
  30. Phillis, J. W., Tebécis, A. K. and York, D. H. (1967). ‘A study of cholinoceptive cells in the lateral geniculate nucleus’, J. Physiol., Lond. 192, 695–713PubMedPubMedCentralCrossRefGoogle Scholar
  31. Randié, M. and Myslinski, N. R. (1974). ‘Microiontophoretic studies of neurones in the Clarke’s column’, XXVI Int. Congr. Physiol. Sci. Abstract 298Google Scholar
  32. Roessmann, U. and Friede, R. L. (1967). ‘The segmental distribution of acetylcholinesterase in the cat spinal cord’, J. Anat. 101, 27–32PubMedPubMedCentralGoogle Scholar
  33. Salmoiraghi, G. C. and Stefanis, C. N. (1967). ‘A citique of iontophoretic studies of central nervous system neurones’, Int. Rev. Neurobiol., 10, 1–30PubMedCrossRefGoogle Scholar
  34. Silver, A. and Wolstencroft, J. H. (1970). ‘Cholinesterases and choline acetylase in the spinal cord of the cat’, J. Physiol., Lond., 210, 92–93 PGoogle Scholar
  35. Silver, A. and Wolstencroft, J. H. (1971). The distribution of cholinesterases in relation to the structure of the spinal cord in the cat’, Brain Res., 34, 205–227PubMedCrossRefGoogle Scholar
  36. Steiner, F. A. and Meyer, M. (1966). ‘Actions of L-glutamate, acetylcholine and dopamine on single neurones in the nuclei, cuneatus and gracilis of the cat’, Experientia., 22, 58–59PubMedCrossRefGoogle Scholar
  37. Weight, F. F. and Salmoliraghi, G. C. (1966). ‘Responses of spinal cord interneurones to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis’, J. Pharmac. exp. Ther., 153, 420–427Google Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • M. Randić
    • 1
  • N. R. Myslinski
    • 1
  1. 1.Department of Biochemistry and PharmacologyTufts University School of MedicineBostonUSA

Personalised recommendations