Advertisement

Gallium Phosphide

  • P. B. Hart
Part of the Macmillan Engineering Evaluations book series (MECS)

Abstract

Gallium phosphide is a semiconductor of the III–V type, with the same type of crystal structure as silicon, but with gallium and phosphorus atoms on adjacent sites. Because of its detailed band structure, which is characterised by an indirect band-gap, it is quite different electrically from gallium arsenide, and offers none of the advantages of this material in the high frequency devices discussed in the previous chapter. However, the one important feature is the large band-gap, 2.26 eV at room temperature. This energy is within the range of energies of photons visible to the human eye, 1.77 eV to 3.10 eV, corresponding to the wavelength range 7 000Å to 4 000Å. In consequence, it is possible for the emission of light to result from electron transitions within the material. This fact, coupled with the ability to make p-n junctions, has made GaP the object of much research since Wolff first reported electroluminescence in 1954 (1), in a point contact device in poly crystalline material.

Keywords

Appl Phys Gallium Arsenide Shallow Donor Gallium Phosphide Zinc Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G A Wolff, P H Keck and J B Broder, Phys Rev 94, 253 (1954).CrossRefGoogle Scholar
  2. 2.
    D Richman, JAppl Phys 24, 1131 (1963).Google Scholar
  3. 3.
    G Giesecke and H Pfister, Acta Cryst 11, 369 (1958).CrossRefGoogle Scholar
  4. 4.
    E D Pierron, D L Parker and J B McNeeley, JAppl Phys 38, 4469 (1967).Google Scholar
  5. 5.
    E F Steigmeier and I Kudman, Phys Rev 141, 767 (1966).CrossRefGoogle Scholar
  6. 6.
    See Ref (38).Google Scholar
  7. 7.
    D A Kleinman and W G Spitzer, Phys Rev 118, 110, 1960.CrossRefGoogle Scholar
  8. 8.
    G A Wolff, L toman, N I Field and J C Clark ‘Halbleiter und Phosphore’ p 463, Wiley (Interscience) NY 1958.Google Scholar
  9. 9.
    R C Taylor, JElectrochem Soc 116, 383 (1969).CrossRefGoogle Scholar
  10. 10.
    R H Saul, J Electrochem Soc 115, 1184 (1968).CrossRefGoogle Scholar
  11. 11.
    S J Bass and P E Oliver, J Crystal Growth, 3, 286 (1968).CrossRefGoogle Scholar
  12. 12.
    T S Plaskett, J Electrochem Soc 116, 1723 (1969).CrossRefGoogle Scholar
  13. 13.
    S E Blum and R J Chicotka, J Electrochem Soc 115, 298 (1968).Google Scholar
  14. 14.
    L C Luther, Metall Trans, 1, 593 (1970).CrossRefGoogle Scholar
  15. 15.
    H Rodot, A Hruby and M Schneider, J Crystal Growth, 3, 4, 305 (1968).Google Scholar
  16. 16.
    J Starkiewicz and J W Allen, J Phys Chem Solids, 23, 881 (1962).CrossRefGoogle Scholar
  17. 17.
    M R Lorenz and M Pilkuhn, JAppl Phys 37, 4049 (1966).Google Scholar
  18. 18.
    K K Shih, J M Woodhall, S E Blum and L M Foster, JAppl Phys 39, 2962 (1968).CrossRefGoogle Scholar
  19. 19.
    G R Antell and D Effer, J Electrochem Soc 106, 509 (1959).CrossRefGoogle Scholar
  20. 20.
    R Nicklin. Private Communication.Google Scholar
  21. 21.
    C J Frosch, J Electrochem Soc 111, 180 (1964).CrossRefGoogle Scholar
  22. 22.
    R H Saul, J Electrochem Soc 115, 1184 (1968).CrossRefGoogle Scholar
  23. 23.
    F A Trumbore, Paper No 75, ECS Conference, Los Angeles, May 1970.Google Scholar
  24. 24.
    S F Nygren and G L Pearson, J Electrochem Soc 116, 649 (1969).CrossRefGoogle Scholar
  25. 25.
    Private communication. R Nicklin, Allen Clark Research Centre, The Plessey Company Limited.Google Scholar
  26. 26.
    J W Allen and R J Cherry, J Phys Chem Solids, 4, 155 (1958).CrossRefGoogle Scholar
  27. 27.
    W G Spitzer and W Allred; S E Blum and R J Chicotka, JAppl Phys, 40, 2589 (1969).CrossRefGoogle Scholar
  28. 28.
    R Zallen and W Paul, Phys Rev 134, A1628, 1964.CrossRefGoogle Scholar
  29. 29.
    M B Panish and H C Casey, JAppl Phys 40, 163 (1969).CrossRefGoogle Scholar
  30. 30.
    A L Edwards, J Phys Chem Solids, 11, 140 (1959).CrossRefGoogle Scholar
  31. 31.
    M, Gershenzon, ‘Semiconductors and Semimetals’, Vol 2, p 305 (Ed Willardson and Beer ), Academic Press, NY and London (1966).Google Scholar
  32. 32.
    R A Logan and A G Chynoweth, J Appl Phys 33, 1649 (1964).CrossRefGoogle Scholar
  33. 33.
    R A Logan and H F White and R M Mikulyak, Appl Phys Letts, 5, 41, 1964.CrossRefGoogle Scholar
  34. 34.
    R Nicklin, A W Russell and P C Newman, Electr Lett 3, 363, 1967.CrossRefGoogle Scholar
  35. 35.
    F Ermanis, H C Casey and K Wolfstirn, J Appl Phys 39, 4856 (1968).CrossRefGoogle Scholar
  36. 36.
    W G Spitzer, M Gershenzon, C J Frosch and D F Gibbs, J Phys Chem Solids 11, 339 (1959).CrossRefGoogle Scholar
  37. 37.
    S D Lacey, Solid State Co Communications, 8, 1115 (1970).CrossRefGoogle Scholar
  38. 38.
    B O Seraphim and H E Bennett, ‘Semiconductors and Semimetals’, Volume 3, (Ed Willardson and Beer ), Academic Press, NY and London 1967.Google Scholar
  39. 39.
    W G Spitzer, W Allred, S E Blum and R J Chicotka, J Appl Phys 40, 2589 (1969).CrossRefGoogle Scholar
  40. 40.
    See ref 16.Google Scholar
  41. 41.
    See D G Thomas, Brit J Appl Phys (J Phys D) Ser 2, 2, 637 (1969) for a review.Google Scholar
  42. 42.
    A Onton and M R Lorenz, Appl Phys Letts 12, 115 (1968).CrossRefGoogle Scholar
  43. 43.
    R A Logan, H G White and W Weigman. Appl Phys Letts 13, 139 (1968).CrossRefGoogle Scholar
  44. 44.
    R A Faulkner, Phys Rev 175, 991 (1968).CrossRefGoogle Scholar
  45. 45.
    L M Foster and J Scardfield, JElectrochem Soc 116, 495 (1969).Google Scholar
  46. 46.
    M R Lorenz and G D Pettit, J Appl Phys 38, 3983 (1967).CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1971

Authors and Affiliations

  • P. B. Hart
    • 1
    • 2
  1. 1.Allen Clark Research CentreUK
  2. 2.The Plessey Company LimitedUK

Personalised recommendations