Electronics Design Materials pp 147-154 | Cite as
Gallium Phosphide
Abstract
Gallium phosphide is a semiconductor of the III–V type, with the same type of crystal structure as silicon, but with gallium and phosphorus atoms on adjacent sites. Because of its detailed band structure, which is characterised by an indirect band-gap, it is quite different electrically from gallium arsenide, and offers none of the advantages of this material in the high frequency devices discussed in the previous chapter. However, the one important feature is the large band-gap, 2.26 eV at room temperature. This energy is within the range of energies of photons visible to the human eye, 1.77 eV to 3.10 eV, corresponding to the wavelength range 7 000Å to 4 000Å. In consequence, it is possible for the emission of light to result from electron transitions within the material. This fact, coupled with the ability to make p-n junctions, has made GaP the object of much research since Wolff first reported electroluminescence in 1954 (1), in a point contact device in poly crystalline material.
Keywords
Appl Phys Gallium Arsenide Shallow Donor Gallium Phosphide Zinc DiffusionPreview
Unable to display preview. Download preview PDF.
References
- 1.G A Wolff, P H Keck and J B Broder, Phys Rev 94, 253 (1954).CrossRefGoogle Scholar
- 2.D Richman, JAppl Phys 24, 1131 (1963).Google Scholar
- 3.G Giesecke and H Pfister, Acta Cryst 11, 369 (1958).CrossRefGoogle Scholar
- 4.E D Pierron, D L Parker and J B McNeeley, JAppl Phys 38, 4469 (1967).Google Scholar
- 5.E F Steigmeier and I Kudman, Phys Rev 141, 767 (1966).CrossRefGoogle Scholar
- 6.See Ref (38).Google Scholar
- 7.D A Kleinman and W G Spitzer, Phys Rev 118, 110, 1960.CrossRefGoogle Scholar
- 8.G A Wolff, L toman, N I Field and J C Clark ‘Halbleiter und Phosphore’ p 463, Wiley (Interscience) NY 1958.Google Scholar
- 9.R C Taylor, JElectrochem Soc 116, 383 (1969).CrossRefGoogle Scholar
- 10.R H Saul, J Electrochem Soc 115, 1184 (1968).CrossRefGoogle Scholar
- 11.S J Bass and P E Oliver, J Crystal Growth, 3, 286 (1968).CrossRefGoogle Scholar
- 12.T S Plaskett, J Electrochem Soc 116, 1723 (1969).CrossRefGoogle Scholar
- 13.S E Blum and R J Chicotka, J Electrochem Soc 115, 298 (1968).Google Scholar
- 14.L C Luther, Metall Trans, 1, 593 (1970).CrossRefGoogle Scholar
- 15.H Rodot, A Hruby and M Schneider, J Crystal Growth, 3, 4, 305 (1968).Google Scholar
- 16.J Starkiewicz and J W Allen, J Phys Chem Solids, 23, 881 (1962).CrossRefGoogle Scholar
- 17.M R Lorenz and M Pilkuhn, JAppl Phys 37, 4049 (1966).Google Scholar
- 18.K K Shih, J M Woodhall, S E Blum and L M Foster, JAppl Phys 39, 2962 (1968).CrossRefGoogle Scholar
- 19.G R Antell and D Effer, J Electrochem Soc 106, 509 (1959).CrossRefGoogle Scholar
- 20.R Nicklin. Private Communication.Google Scholar
- 21.C J Frosch, J Electrochem Soc 111, 180 (1964).CrossRefGoogle Scholar
- 22.R H Saul, J Electrochem Soc 115, 1184 (1968).CrossRefGoogle Scholar
- 23.F A Trumbore, Paper No 75, ECS Conference, Los Angeles, May 1970.Google Scholar
- 24.S F Nygren and G L Pearson, J Electrochem Soc 116, 649 (1969).CrossRefGoogle Scholar
- 25.Private communication. R Nicklin, Allen Clark Research Centre, The Plessey Company Limited.Google Scholar
- 26.J W Allen and R J Cherry, J Phys Chem Solids, 4, 155 (1958).CrossRefGoogle Scholar
- 27.W G Spitzer and W Allred; S E Blum and R J Chicotka, JAppl Phys, 40, 2589 (1969).CrossRefGoogle Scholar
- 28.R Zallen and W Paul, Phys Rev 134, A1628, 1964.CrossRefGoogle Scholar
- 29.M B Panish and H C Casey, JAppl Phys 40, 163 (1969).CrossRefGoogle Scholar
- 30.A L Edwards, J Phys Chem Solids, 11, 140 (1959).CrossRefGoogle Scholar
- 31.M, Gershenzon, ‘Semiconductors and Semimetals’, Vol 2, p 305 (Ed Willardson and Beer ), Academic Press, NY and London (1966).Google Scholar
- 32.R A Logan and A G Chynoweth, J Appl Phys 33, 1649 (1964).CrossRefGoogle Scholar
- 33.R A Logan and H F White and R M Mikulyak, Appl Phys Letts, 5, 41, 1964.CrossRefGoogle Scholar
- 34.R Nicklin, A W Russell and P C Newman, Electr Lett 3, 363, 1967.CrossRefGoogle Scholar
- 35.F Ermanis, H C Casey and K Wolfstirn, J Appl Phys 39, 4856 (1968).CrossRefGoogle Scholar
- 36.W G Spitzer, M Gershenzon, C J Frosch and D F Gibbs, J Phys Chem Solids 11, 339 (1959).CrossRefGoogle Scholar
- 37.S D Lacey, Solid State Co Communications, 8, 1115 (1970).CrossRefGoogle Scholar
- 38.B O Seraphim and H E Bennett, ‘Semiconductors and Semimetals’, Volume 3, (Ed Willardson and Beer ), Academic Press, NY and London 1967.Google Scholar
- 39.W G Spitzer, W Allred, S E Blum and R J Chicotka, J Appl Phys 40, 2589 (1969).CrossRefGoogle Scholar
- 40.See ref 16.Google Scholar
- 41.See D G Thomas, Brit J Appl Phys (J Phys D) Ser 2, 2, 637 (1969) for a review.Google Scholar
- 42.A Onton and M R Lorenz, Appl Phys Letts 12, 115 (1968).CrossRefGoogle Scholar
- 43.R A Logan, H G White and W Weigman. Appl Phys Letts 13, 139 (1968).CrossRefGoogle Scholar
- 44.R A Faulkner, Phys Rev 175, 991 (1968).CrossRefGoogle Scholar
- 45.L M Foster and J Scardfield, JElectrochem Soc 116, 495 (1969).Google Scholar
- 46.M R Lorenz and G D Pettit, J Appl Phys 38, 3983 (1967).CrossRefGoogle Scholar