Skip to main content

The Applications of Flame Photometry in Biology and Medicine

  • Chapter
Analytical Flame Spectroscopy

Part of the book series: Philips Technical Library ((PTL))

  • 218 Accesses

Abstract

Quantitative flame photometry was first developed by Lundegårdh [1] in 1928–30, in conjunction with his plant-physiological investigations. He required rapid methods for the determination of various elements, e.g., potassium, in order to investigate their absorption as plant nutrients from the soil. Lundegårdh was also the first to apply his quantitative methods to medical questions. The development of the first commercial flame photometer by Zeiss (Waibel [2]) was stimulated by the demands of agricultural biology. The early development of flame-photometric methods in the USA by Barnes [3] was due to the requirements of military medicine in the last World War, when it was found necessary to determine rapidly the concentration of certain elements in the blood or serum of wounded soldiers, so that threats to the life of the patients could be quickly diagnosed and adequately treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lundegardh, H., Die quantitative Spektralanalyse der Elemente, Bd. I: Ihre Anwendung auf biologische, agrikulturchemische und mineralogische Aufgaben. Bd. II: Methodische Verbesserungen und praktische Ausführung von Analysen in den Gebieten der Biologie, Medizin, Agriculturchemie und des Bergbaues, G. Fischer, Jena 1929 and 1934.

    Google Scholar 

  2. Waibel, F., Über optische Methoden zur Untersuchung des Ackerbodens, Z. f. techn. Physik 19, 394 (1938).

    Google Scholar 

  3. Barnes, R. B., D. Richardson, J. W. Berry, and R. L. Hood, Flame photometry, a rapid analytical procedure, Ind. Eng. Chem., Anal. Ed. 17, 605 (1945).

    Article  CAS  Google Scholar 

  4. Alkemade, C. T. J. and J. M. W. Milatz, Double-beam method of spectral selection with flames, J. Opt. Soc. Amer. 45, 583 (1955).

    Article  Google Scholar 

  5. Walsh, A., The application of atomic absorption spectra to chemical analysis, Spectrochim. Acta 7, 108 (1955).

    Article  CAS  Google Scholar 

  6. Winefordner, J. D. and T. J. Vickers, Atomic fluorescence spectrometry as a means of chemical analysis, Anal. Chem. 36, 161 (1964).

    Article  CAS  Google Scholar 

  7. Herrmann, T., Neuere Entwicklungen der flammenphotometrischen Analysenverfahren, Z. f. analytische Chemie 212, 1 (1965).

    Article  CAS  Google Scholar 

  8. Gilbert, P.T., JR., New horizons in flame spectrophotometry, The Analyzer II, No. I Jan. 1961, p. 3.

    Google Scholar 

  9. Mavrodineanu, R. and H. Boiteux, Flame Spectroscopy, John Wiley and Sons, Inc., New York 1965.

    Google Scholar 

  10. Alkemade, C. T. J., A contribution to the development and understanding of flame photometry, Diss., Utrecht 1954.

    Google Scholar 

  11. Winefordner, J. D., T. Vickers and L. Remington, Calculation of concentration corresponding to the point of intersection of high and low concentration segments of analytical curves in atomic emission flame spectrometry, Anal. Chem. 37, 1216 (1965).

    Article  CAS  Google Scholar 

  12. Puschel, A. and S. Eckhard, Organische Lösungsmittel in der Flammenspektrometrie, Arch. Eisenhüttenwes. 30, 731 (1959).

    CAS  Google Scholar 

  13. Jarrell-Ash, Multi-element approaches in atomic absorption-spectroscopy, Jarrell-Ash research bull. No. 101 (1967).

    Google Scholar 

  14. Wacker, W. E. C., C. Iida, and K. Fuwa, Accuracy of determination of serum magnesium by flame emission and atomic absorption spectrometry, Nature 202, (4933) 659 (1964).

    Article  CAS  Google Scholar 

  15. Lang, W., Zur flammenspektrophotometrischen Absorptionsmessung nach der AIs-Methode, Zeitschrift f. anal. Chemie 217, 161 (1966).

    Article  CAS  Google Scholar 

  16. Koirtyohann, S. R. and E. E. Pickett, Spectral interferences in atomic absorption spectrometry, Anal. Chem. 38, 585 (1966).

    Article  CAS  Google Scholar 

  17. Allos, M. D. and J. B. Willis, Use of high-temperature pre-mixed flames in atomic absorption spectroscopy, Spectrochim. Acta 22, 1325 (1966).

    Article  Google Scholar 

  18. Bowman, J. A. and J. B. Willis, Some applications of the nitrous oxide-acetylene flame in chemical analysis by atomic absorption spectrometry, Anal. Chem. 39, 1210 (1967).

    Article  CAS  Google Scholar 

  19. Slavin, W., Recent developments in analytical atomic absorption spectroscopy, Atom. Abs. Newsl. 5, 42 (1966).

    CAS  Google Scholar 

  20. Filcek, M., Die Ausschaltung des Phosphateinflusses bei der flammenphotometrischen Calciumbestimmung, Z. f. Pflanzenernährung, Düngung, Bodenkunde 85, 112 (1959).

    Article  CAS  Google Scholar 

  21. Herrmann, R. and C. T. J. Alkemade, Flame Photometry, Chemical Analysis, Vol. 14, Transl. by Paul T. Gilbert, Jr., Interscience Publishers, New York-London 1963.

    Google Scholar 

  22. Fukushima, S., Mechanism and elimination of interferences in flame photometry, Mikrochim. Acta 1960, 332.

    Google Scholar 

  23. Foster, W. H. and D. N. Hume, Mutual cation interference effects in flame photometry, Anal. Chem. 31, 2033 (1969).

    Article  Google Scholar 

  24. Farley, K. R. and H. E. Peterson, Determination of cesium and rubidium by flame photometry, U. S. Bur. Mines, Rept. Invest. No. 6820, 19 pp (1966).

    Google Scholar 

  25. Luken, H. F., J. S. Teal and E. Eisenberg, Flame spectrophotometry of calcium with reversed oxyacetylene flame. Anal. Chem. 35, 875 (1963).

    Article  Google Scholar 

  26. Mason, J. L., Flame photometric determination of potassium in unashed plant leaves, Anal. Chem. 35, 874 (1963).

    Article  Google Scholar 

  27. Gilbert, P. T. JR., Direct flame photometric analysis of powdered materials, Anal. Chem. 34, 1025 (1962).

    Article  CAS  Google Scholar 

  28. Herrmann, R., W. Knoth and W. MeyhÖFer, Atomabsorptionsspektrophotometrische Untersuchungen des Magnesium- und Zinkgehaltes im Hoden- und Prostata-Gewebe, sowie Spermaplasma des Menschen, 13. Intern. Dermatologenkongress München 3. 8. 67.

    Google Scholar 

  29. Tipton, I. and M. Coox, Trace elements in human tissue. Part II. Adult subjects from the United States, Health Physics 9, 103 (1963).

    Article  CAS  Google Scholar 

  30. Herrmann, R. and W. Rick, Probleme der flammenphotometrischen Serum-Analysen, Acta Geologica et Geographica Universitatis Comenianae Geoligica Nr. 6, 507 (1959).

    Google Scholar 

  31. Winefordner, J. D., C. T. Mansfield and T. I. Vickers, Atomization efficiency of total consumption. Atomizer-burners in flame photometry, Anal. Chem. 35, 1607 (1963).

    Article  CAS  Google Scholar 

  32. Winefordner, J. D. and H. W. Latz, Quantitative study of factors influencing sample flow rate in flame photometry, Anal. Chem. 33, 1727 (1961).

    Article  CAS  Google Scholar 

  33. Alkemade, C. T. J. and M. E. G. Jeuken, Zur Frage des Aluminiumeinflusses auf die Calciumemission in der Flamme, Z. f. analyt. Chem. 158, 401 (1957).

    Article  CAS  Google Scholar 

  34. Alkemade, C. T. J. and M. H. Voorhuis, Zur Frage des Phosphoreinflusses auf die Calcium-emission in der Flamme, Z. anal. Chemie 163, 91 (1958).

    Article  CAS  Google Scholar 

  35. Schuhknecht, W. and H. Schinkel, Beitrag zur Deutung von Verdampfungs-, Zersetzungsund Anregungsvorgängen in Flammen, Z. anal. Chemie 162, 266 (1958).

    Article  CAS  Google Scholar 

  36. Alkemade, C. T. J., J. Smit and J. C. M. Verschure, A further contribution to the development of the flame photometric determination of sodium and potassium in blood serum, Biochimica et Biophysica Acta 8, 562 (1952).

    Article  CAS  Google Scholar 

  37. Alkemade, C. T. J., Effects of ionization in an air-acetylene flame. Physica 18, 933 (1952).

    Article  CAS  Google Scholar 

  38. Davis, S., A flame photometric method for the determination of plasma magnesium after hydroxyquinoline precipitation, J. of Biol. Chemistry 216, 643 (1955).

    CAS  Google Scholar 

  39. Ebert, K., Flammenphotometrische Bestimmung von Calcium in Pflanzenaschen, Z. f. Landwirschftl. Versuchs- und Untersuchungswesen 10, 329 (1964).

    CAS  Google Scholar 

  40. Fawcett, J. K. and V. Wynn, The determination of magnesium in biological materials by flame photometry, J. Clin. Path. 14, 403 (1961).

    Article  CAS  Google Scholar 

  41. Fawcett, J. K. and V. Wynn, A new principle applied to the determination of calcium in biological materials by flame photometry, J. Clin. Path. 14, 463 (1961).

    Article  CAS  Google Scholar 

  42. Funder, J. and J. W. Wieth, Determination of sodium, potassium and water in human red blood cells, Scand. J. Clin. a. Lab. Investig. 18, 151–166 (1966).

    Article  CAS  Google Scholar 

  43. Geyer, R. P. and E. J. Bowie, The direct microdetermination of tissue calcium by flame photometry, Anal. Biochemistry 2, 360 (1961).

    Article  CAS  Google Scholar 

  44. Haussler, A. and P. HaidÛ, Wissenswertes für die pharmazeutische Praxis. Die flammen-photometrische Bestimmung von Natrium, Kalium und Calcium in Serum und Harn unter besonderer Berücksichtigung der hauptsächlichen Störungen. Mitt. dtsch. pharmaz. Ges. 29. Jahrg. (1959) Nr. 5, 73, Sond. aus: Archiv der Pharmazie, 292./64. Band.

    Google Scholar 

  45. Heeney, H. B., G. M. Ward and A. F. Willson, A method for eliminating interference from phosphorus in the flame spectrophotometric determination of calcium, Analyst 87, 49 (1962).

    Article  CAS  Google Scholar 

  46. Jones, J. G. and J. D. R. Thomas, Flame spectrophotometric determination of calcium in human saliva, Analyst 91, 559 (1966).

    Article  CAS  Google Scholar 

  47. Koval, Yu. F., Flame photometric determination of cesium in urine, Lab. Delo 1966 (4), 213.

    Google Scholar 

  48. Macintyre, I., The flame spectrophotometric determination of Ca in biological fluids and an isotopic analysis of the errors in the Kramer-Tisdall procedure, Biochemical Journal 67, 164 (1957).

    Article  CAS  Google Scholar 

  49. Mclean, A. A., Evaluation of flame photometric determination of magnesium in plant material, Can. J. of Plant Science 44, 520 (1964).

    Article  Google Scholar 

  50. Menis, O. and T. C. Rains, Extraction and flame photometric determination of iron, Anal. Chem. 32, 1837 (1960).

    Article  CAS  Google Scholar 

  51. Newman, G. E. and M. Ryan, The determination of copper in biological materials by flame spectrophotometry, J. Clin. Path. 15, 181 (1962).

    Article  CAS  Google Scholar 

  52. Quellmalz, E., Die Bestimmung der Pflanzennährstoffe im Ammoniumlaktatessigsäureextrakt unter besonderer Berücksichtigung der Flammenphotometrie, Dissert. Karlsruhe 1960.

    Google Scholar 

  53. Rains, T. C., H. E. Zittel and M. Ferguson, Flame spectrophotometric determination of micro concentrations of strontium in calcareous material, Anal. Chem. 34, 778 (1962).

    Article  CAS  Google Scholar 

  54. Rains, T. C., H. E. Zittel and M. Ferguson, Elimination of anionic interferences in the flame spectrophotometric determination of calcium. Use of glycerol as a releasing agent, Talanta 10, 367 (1963).

    Article  CAS  Google Scholar 

  55. Rick, W. and R. Herrmann, Probleme bei flammenphotometrischen Serum-Calcium-Analysen mit Hilfe der Wasserstoff-Sauerstoff-Flamme, Zeitschrift für die ges. exper. Med. 136, 221 (1962).

    Article  CAS  Google Scholar 

  56. Schmid, A. and K. Zipf, Zur flarnmenphotometrischen Bestimmung von Calcium und Strontium in Knochen, Biochem. Z. 331, 144 (1959).

    CAS  Google Scholar 

  57. Schmidt, W., Eine genaue flammenspektrometrische Methode zur quantitativen Bestimmung von Magnesium in Blutserum und Vollblut, Das. ärztl. Laborat. 6, 206 (1960).

    CAS  Google Scholar 

  58. Toribara, T. Y., Some analytical problems associated with the study of calcium metabolism, Record of chem. Progr. 19, 63 (1958).

    CAS  Google Scholar 

  59. Warren, R. L., The determination of copper and magnesium in blood serum by high-resolution flame spectrophotometry, Analyst 90, 549 (1965).

    Article  CAS  Google Scholar 

  60. Butler, L. R. P. and P. M. Mathews, Determination of trace quantities of Mo by atomic absorption spectroscopy, Anal. Chim. Acta 36, 319 (1966).

    Article  CAS  Google Scholar 

  61. David, D. J., Determination of strontium in biological materials and exchangeable strontium in soils by atomic-absorption spectrophotometry, Analyst 87, 576 (1962).

    Article  CAS  Google Scholar 

  62. Fuwa, K., P. Pulido, R. Mckay, and B. L. Vallee, Determination of zinc in biological materials by atomic absorption spectrophotometry, Anal. Chem. 36, 2407 (1964).

    Article  CAS  Google Scholar 

  63. Gudzinowicz, B. J. and V. J. Luciano, Analysis of organometallic fungicides and related compounds by atomic absorption spectroscopy, Research Department, Jarrell-Ash Co. Waltham, Mass. 1965.

    Google Scholar 

  64. Hanig, R. C. and M. H. Aprison, Determination of calcium, magnesium, sodium and potassium in rabbit caudate nuclei by atomic absorption spectrophotometry, Life Science 4, 945 (1965).

    Article  CAS  Google Scholar 

  65. Herrmann, R., W. Lang and D. Stamm, Hämoglobinbestimmung durch absorptionsflammenspektrophotometrische Eisenanalyse (Atomabsorption im Gesamtblut), Blut XI, 135 (1965).

    Google Scholar 

  66. Herrmann, R., Grundlagen und Anwendungen der Atomabsorptionsspektroskopie in Flammen, Z. klin. Chem. 3, 178 (1965).

    CAS  Google Scholar 

  67. Hinson, W. H., An ion exchange treatment of plant as extracts for removal of interfering anions in the determination of calcium by atomic absorption, Spectrochim. Acta 18, 427 (1962).

    CAS  Google Scholar 

  68. Newburn, E., Application of atomic absorption spectroscopy to the determination of calcium in saliva, Nature 192, 1182 (1961).

    Article  Google Scholar 

  69. Parker, H. E., Magnesium, calcium and zinc in animal nutrition, At. Abs. Newsl. 13, 1–7 (1963).

    Google Scholar 

  70. Perkin-Elmer, Recovery of calcium, magnesium and zinc in biological materials, At. Abs. Newsl. 11, (1963).

    Google Scholar 

  71. Perkin-Elmer, Calcium, magnesium, sodium and potassium in bone ash, At. Abs. Newsl. 11 (1963).

    Google Scholar 

  72. Prasad, A. S., D. Oberleas and J. A. Halsted, Determination of zinc in biological fluids by atomic absorption spectrophotometry, J. Lab. Clin. Med. 66, 508 (1965).

    CAS  Google Scholar 

  73. Rodgerson, D. O. and R. E. Helfer, Determination of iron in serum or plasma by atomic absorption spectrophotometry, Clin. Chem. 12, 338 (1966).

    CAS  Google Scholar 

  74. Rousselet, F. and M. L. Girard, Intérêt de la spectrophotométrie de flamme par absorption atomique pour le microdosage couplé du cuivre et du zinc dans les mileux biologiques, Comptes rendus de l’Accadémie des Sciences 260, 3780 (1965).

    CAS  Google Scholar 

  75. Slavin, W. and S. Sprague, The determination of trace metals in blood and urine by atomic absorption spectrophotometry, At. Abs. Newsl. 17, (1964).

    Google Scholar 

  76. Sprague, S. and W. Slavin, Determination of FE, Cu and Zn in blood serum by an atomic absorption method requiring only dilution, At. Abs. Newsl. 4, 228 (1965).

    CAS  Google Scholar 

  77. Stewart, W. K., F. Hutchinson and L. W. Fleming, The estimation of magnesium in serum and urine by atomic absorpt. spectrophotometry, J. Laboratory and Clin. Medicine 61, 858 (1963).

    CAS  Google Scholar 

  78. Trent, D. and W. Slavin, Factors in the determination of strontium by atomic absorption spectrophotometry with particular reference to ashed biological samples, At. Abs. Newsl. 22, (1964).

    Google Scholar 

  79. Williams, C. H., D. J. David and O. Iismaa, The determination of chromic oxide in feces samples by atomic abs. spectrophot. J. Agr. Sci. 59, 381 (1962).

    Article  CAS  Google Scholar 

  80. Willis, J. B., Determination of calcium and magnesium in urine by atomic absorption spectroscopy, Anal. Chem. 33, 556 (1961).

    Article  CAS  Google Scholar 

  81. Willis, J. B., The analysis of biological materials by atomic absorption spectroscopy, Clin. Chem. 11, 251 (1965).

    CAS  Google Scholar 

  82. Zettner, A. and D. Seligson, Application of atomic absorption spectrophotometry in the determination of calcium in serum, Clin. Chem. 10, 869 (1964).

    CAS  Google Scholar 

  83. Alcock, N. W. and I. Macintvre, Methods for estimating magnesium in biological materials, Methods Biochem. Anal. 14, 1 (1966).

    Article  CAS  Google Scholar 

  84. Hamilton, P. B., Biochemical analysis, Anal. Chem. 38, 19 R (1966).

    Article  Google Scholar 

  85. Herrmann, R. and K. RÖtger, Plasmabogen für klinisch-chemische Analysen, Z. f. klin. Chemie 4, 217 (1966).

    CAS  Google Scholar 

  86. Lundegardh, H., Die Blattanalyse. Die wissenschaftl. und prakt. Grundlagen einer pflanzenphysiologischen Methode der Bestimmung des Düngerbedürfnisses des Bodens, Jena: Gustav Fischer (1945).

    Google Scholar 

  87. Teloh, H. A., Clinical Flame Photometry, Charles C. Thomas Publ. Springfield Ill. 1959.

    Google Scholar 

  88. Gilbert, P. T., JR., R. C. Havas and A. O. Beckman, Beckman flame spectrophotometer, Anal. Chem. 22, 772 (1950).

    Article  CAS  Google Scholar 

  89. Gilbert, P. T., JR., Flame Photometry - New Precision in Elemental Analysis, Industr. Laboratories Aug. 1952.

    Google Scholar 

  90. Gilbert, P. T., JR., Flame spectra of the elements, Beckman Instruments, Inc. Fullerton Calif. Bulletin 753 (1959).

    Google Scholar 

  91. Gilbert, P. T., JR., Analytical flame photometry: new developments, Symposium on Spectrosscopy, Oct. 1959. 3rd Pacific Area Nat. Meeting Amer. Soc. for Testing Materials (ASTM), San Francisco, Oct. 1959, ASTM Spec. Techn. Publ. No. 269, (1960) 73.

    Google Scholar 

  92. Gilbert, P. T., JR., Flame photometry, less familiar elements, from: The Encyclopedia of Spectroscopy, G. L. Clark, p. 346, Reinhold Publ. Corp. New York 1960.

    Google Scholar 

  93. Gilbert, P. T., JR., Flame spectra of the elements (s. edit.) Beckman Bulletin 753-A (1961).

    Google Scholar 

  94. Gilbert, P. T., JR., Flame photometry, Table 6–41 Flame spectra of various emitting species, Handbook of Anal. Chemistry, Sec. 6, 197, New York 1963.

    Google Scholar 

  95. Merker, W. and R. Herrmann, Über eine Fehlerquelle bei der Calciumbestimmung im Serum, Ärzt. Wochenschr. 9, 1196 (1954).

    CAS  Google Scholar 

  96. Stamm, D. and R. Herrmann, Mikrolitermethode zur flammenphotometrischen Bestimmung von Natrium, Kalium und Calcium mit handelsüblichen Geräten, Z. f. klin. Chemie 3 (6) 193 (1965).

    CAS  Google Scholar 

  97. Baumann, R. and R. Herrmann, Mikroanalyse des Serumelektrolytgehaltes aus dem Capillarblut, Z. exp. Med. 120, 172 (1952).

    Article  Google Scholar 

  98. Herrmann, R., Flammenphotometrische Ultramikroanalyse von Na, K und Ca im Serum, Z. f. d. ges. exp. Med. 122, 84 (1953).

    Article  CAS  Google Scholar 

  99. Herrmann, R. and R. Baumann, . Med. 119, 487 (1952).

    CAS  Google Scholar 

  100. Baumann, R., R. Herrmann and R. Metzger, Über Fehler bei der Bestimmung der Elektrolyte NA, K. und Ca im menschl. Serum, Ärztl. Wschr. 1954, 202.

    Google Scholar 

  101. Kafka, J. und R. Herrmann, Über Fehler bei der Bestimmung der Elektrolyte NA, K und Ca im menschlichen Serum, Ärztl. Wschr. 1954, 547.

    Google Scholar 

  102. Baumann, R., S. Krause and R. Herrmann, Das Verhalten der Elektrolyte NA, K und CA im menschlichen Serum unter dem Einfluss des Dampfbades, Archiv. f. Physik. Therapie 4, 423 (1952).

    CAS  Google Scholar 

  103. Herrmann, R. and E. Heinke, Die Beeinflussung der K- und Ca-Konzentrationen im Serum durch künstliche Ozonisierung der Raumluft, Strahlentherapie 87, 473 (1952).

    CAS  Google Scholar 

  104. Stamm, D., Tagesschwankungen der Normalbereiche diagnostisch wichtiger Blutbestandteile, Kongressbericht Bd. 73 (1967), Internistenkongress Wiesbaden, April 1967.

    Google Scholar 

  105. Herrmann, R., Flammenphotometrie mit oder ohne Leitlinieneichung, Optik 12, 189 (1955).

    Google Scholar 

  106. Dinning, J. I., Releasing effects in flame photometry. Determination of Ca, Anal. Chem. 32, 1475 (1960).

    Article  Google Scholar 

  107. YofÉ, J., R. Avni and M. Stiller, Elimination of phosphate interference in flame photometric determination of strontium and barium, Anal. Chim. Acta 28, 331 (1963).

    Article  Google Scholar 

  108. Armentrout, D. N., Interference mechanism in analysis by flame spectrometry, Thesis, Cornell University, Sept. 1965, Ithaca, NY.

    Google Scholar 

  109. Honegger, N., Serum-Zink-Analysen mit Hilfe der Absorptions Flammenphotometrie, Das Ärztl. Laboratorium 1963, 41.

    Google Scholar 

  110. Herrmann, R. and W. Lang, Serum-Kupfer-Analysen mit Hilfe der Absorptions-Flammenphotometrie, Z. klin. Chem. 1, 182 (1963).

    CAS  Google Scholar 

  111. Van Fossan, D. D., E. E. Baird and G. S. Tekell, A simplified flame spectrophotometric method for estimation of magnesium in serum, J. Clin. Path. 31, 368 (1959).

    CAS  Google Scholar 

  112. Holt, A. B. and R. B. Eworr, A simplified method for determining plasma magnesium by flame spectrophotometry, Med. J. Australia 52, (2), 46 (1965).

    CAS  Google Scholar 

  113. Zhitkevich, V. F., A. J. Lyutyi, V. S. Rossikhin and J. L. Tsikora, Anomalous excitation of metals in flames and in the vapors of certain organic compounds, Optics and Spectroscopy 15, 217 (1963).

    Google Scholar 

  114. Elfers, L. A., P. F. Hallbach and R. J. Velten, Flame photometric determination of stable strontium in environmental media, Anal. Chem. 36, 540 (1964).

    Article  CAS  Google Scholar 

  115. Shimp, N. F., J. Connor, A. L. Prince and F. E. Bear, Spectrochemical analysis of soils and biological materials, Soil Science 83, 51 (1957).

    Article  CAS  Google Scholar 

  116. Middleton, G. and R. E. Stuckey, The preparation of biological material for the determination of trace metals, Analyst 78, 532 (1953).

    Article  CAS  Google Scholar 

  117. Koepke, V. and G. Knof, A series of determinations of calcium and magnesium by the wet digestion of plant substances, First communication. Flame photometric determination of calcium. Albrecht-Thaer-Arch. 10 (7) 643 (1966).

    CAS  Google Scholar 

  118. Rooney, R. C., The determination of tin in beer, Analyst 88, 959 (1963).

    Article  CAS  Google Scholar 

  119. Voth, J. L., Spectrographic method for determination of trace elements in milk, Anal. Chem. 35, 1957 (1963).

    Article  CAS  Google Scholar 

  120. Dittel, FR., Verwendung des neuartigen Veraschungsgerätes “Low temperature Asher Lta 500” in der Spurenanalyse, Z. analyt. Chemie 228 (6) 432 (1967).

    Article  CAS  Google Scholar 

  121. Gleit, C. E., High frequency electrodeless discharge system for ashing organic matter, Anal. Chem. 37, 314 (1965).

    Article  CAS  Google Scholar 

  122. Grinberg, A. A., Einführung in die Chemie der Komplexverbindungen, VEB Verlag Technik, Berlin 1955.

    Google Scholar 

  123. Iwantsheff, G., Das Dithizon und seine Anwendung in der Mikro- und Spurenanalyse, Verlag Chemie GmbH, Weinheim 1958.

    Google Scholar 

  124. KortÜm, G. and H. Buchholz-Meisenheimer, Die Theorie der Destillation und Extraktion von Flüssigkeiten, Springer-Verlag, Berlin 1952.

    Book  Google Scholar 

  125. Ringbom, A., Complexation in Analytical Chemistry, Chemical Analysis Vol. 16. John Wiley and Sons, New York, London 1963.

    Google Scholar 

  126. Stary, J., The Solvent Extraction of Metal Chelates, Pergamon Press 1964.

    Google Scholar 

  127. Thorn, G. D. and R. A. Ludwig, The Dithiocarbamates and Related Components, Elsevier Publishing Co. 1962.

    Google Scholar 

  128. Feldman, C. and T. C. Rains, The collection and flame photometric determination of cesium, Anal. Chem. 36, 405 (1964).

    Article  CAS  Google Scholar 

  129. Debras-GuÉdon, J. and I. Voinovitch, Analyse de minerals de fer par spectrophotométrie de flamme, Chim. analytique 43, 267 (1961).

    Google Scholar 

  130. Delas, J., Spectrophotométrie de flamme en milieu oxine application aux dosages du calcium et du magnesium dans les sols et les végétaux, Ann. agron. 15, 633 (1964).

    CAS  Google Scholar 

  131. Heggen, G. E. and L. W. Strock, Determination of trace elements, Anal. Chem, 25, 859 (1953).

    Article  CAS  Google Scholar 

  132. Mitchell, R. L. and R. O. Scorn, Applications of chemical concentration by organic reagents to spectrographic analysis, Spectrochim. Acta 3, 367 (1948).

    Article  CAS  Google Scholar 

  133. Elfers, L.A.,Flame photometric determination of stable cesium in environmental media, Paper presented at “Symposium on Trace Characterization — Chemical and Physical,” Nat. Bur. Stand. Oct. 3–7, 1966, Gaithersburg, Maryland, 130 p.

    Google Scholar 

  134. Schuhknecht, W. and H. Schinkel, Die flammenphotometrische Bestimmung geringer Mengen von Kalium, Natrium und Lithium neben grossen Mengen von Erdalkalien, Fres Z. f. anal. Chemie 143, 321 (1954).

    Article  Google Scholar 

  135. Herrmann, R., Flammenspektrophotometrische Natrium-Analysen mit der Doppellinie bei 330 mg, Z. f. d. ges. exper. Med. 129, 55 (1957).

    Article  CAS  Google Scholar 

  136. Oer, A. v. and H. J. HÖfert, Zur Methodik der flammenphotometrischen Bestimmung von NA, K, und Ca im Blutserum, Archiv f. exp. Pathol. und Pharmakol. 214, 109 (1951).

    CAS  Google Scholar 

  137. Alkemade, C. T. J., Über den Mechanismus einiger Beeinflussungen in der Flammenphotometrie Coll. Spectr. Intern. VIII, Luzern 1959, p. 162.

    Google Scholar 

  138. Herrmann, R., Flammenspektrometrische Mg-Bestimmung im Serum, Z. f. ges. exper. Med. 126 371 (1955).

    Article  CAS  Google Scholar 

  139. Pruden, E. L., R. Meier and D. Plaut, Comparison of serum magnesium values by photometric, fluorometric, atomic absorption and flame emission methods, Clin. Chem. 12, 613 (1966).

    CAS  Google Scholar 

  140. Dawson, J. B. and D. J. Ellis, The simultaneous estimation of NA, K, Ca and Mg by emission and absorption flame photometry using an automatic multichannel high-speed scanning spectrophotometer, Coll. Spectr. Intern. XII, Exeter 1965, Hilger and Watts 1965, 271.

    Google Scholar 

  141. Macintyre, I., Flame Photometry. From: Advances in Clinical Chemistry, Edit.: Harry Sobotka and C. P. Stewart, Vol. 4, 1–28 (1961), Acad. Press.

    CAS  Google Scholar 

  142. Teloh, H. A., Estimation of magnesium in serum by means of flame spectrophotometry, A. J. Clin. Path. 30, 129 (1958).

    CAS  Google Scholar 

  143. Kapuscinski, V., N. Moss, B. Zak and A. J. Boyle, Quantitative determination of calcium and magnesium in human serum by flame spectrophotometry, J. Clin. Path. 22, 687 (1952).

    CAS  Google Scholar 

  144. B. L. Vallee, Simultaneous determination of sodium, potassium, calcium, magnesium and strontium by a new multichannel flame spectrometer, Nature 174, 1050 (1954).

    Article  CAS  Google Scholar 

  145. Knutson, K. E., Flame photometric determination of magnesium in plant material. A study of the emission of magnesium in a highly reducing oxygen-acetylene flame, Analysti 82, 241 (1957).

    Article  CAS  Google Scholar 

  146. Allos, M. D., The determination of the “refractory” elements by atomic absorption spectroscopy, The Element, Techn. News from Aztec Instr. Nr. 10, 1966.

    Google Scholar 

  147. Allos, M. D., Recent Advances and the current status of atomic absorption spectroscopy, Atomiabsorptiospektrofotometrien symposium Kenian Päivät 1, 1 (1966).

    Google Scholar 

  148. Manna, L., D. H. Strunk, and S. L. Adams, Flame spectrophotometric determination of microgram quantities of magnesium, Anal. Chem. 29, 1885 (1957).

    Article  CAS  Google Scholar 

  149. Baker, G. L. and L. H. Johnson, Effects of anions on calcium flame emission in flame photometry, Anal. Chem. 26, 465 (1954).

    Article  CAS  Google Scholar 

  150. Roy, N., Flame photometric determination of sodium, potassium, calcium, magnesium and manganese in glass and raw materials, Anal. Chem. 28, 34 (1956).

    Article  CAS  Google Scholar 

  151. Herrmann, R. and W. Lang, Analysen von Mg im Serum und im anderen Körperfliissigkeiten mit Hilfe der Absorptions-Flammenphotometrie, Z. ges. exp. Med. 135, 569 (1961).

    Article  Google Scholar 

  152. Andersen, C. J., B. Nordentoft Jensen and N. Rud. Keiding, Magnesium determination by flame photometry, Scandinay. J. Clin. and Lab. Investigation 14, 560 (1962).

    Article  CAS  Google Scholar 

  153. Webb, M. S. W., and M. L. Wordingham, The direct flame photometric determination of Sr: Ca ratios in the ash of human bones and teeth, Anal. Chim. Acta 28, 450 (1963).

    Article  CAS  Google Scholar 

  154. Toribara, T. Y., A. Dewey and H. Warner, Flame photometric determination of calcium in biological materials. Effect of low level impurities from calcium oxalate precipitation, Anal. Chem. 29, 540 (1957).

    Article  CAS  Google Scholar 

  155. Herrmann, R., Flammenspektrometrische Cu-Bestimmung im Serum, Z. ges. exper. Med. 126, 334 (1955).

    Article  CAS  Google Scholar 

  156. Vurek, G. G. and R. L. Bowman, Helium Glow Photometer for Analysis of Picomoles of NA, K, CA, MG, and ZN, Engineering in Medicine and Biology, Proceedings of the 19th Annual Conference 1966.

    Google Scholar 

  157. Montgomery, R. D., The estimation of magnesium in small biological samples by flame spectrophotometry, J. Clin. Path. 14, 400 (1961).

    Article  CAS  Google Scholar 

  158. Schmid, A. and K. Ziff, Flammenspektrophotometrische Bestimmung von Strontium und Calcium im Serum, Biochemische Zeitschrift 333, 84 (1960).

    CAS  Google Scholar 

  159. Lang, W. and R. Herrmann, Eine Methode zur flammenspektrophotometrischen Lithiumbestimmung im Serum, Z. f. d. gesamt. exp. Medizin 139, 200 (1965).

    Article  CAS  Google Scholar 

  160. Nevius, D. B. and G. F. Lanchantin, Operation of the Technicon flame photometer with natural gas. Use in the determination of serum lithium and the semi-micro analysis of serum-sodium and potassium, Clin. Chem., 11 (6) 633 (1965).

    CAS  Google Scholar 

  161. Menis, O. and T. C. Rains, Extraction and flame photometric determination of iron, Anal. Chem. 32, 1837 (1960).

    Article  CAS  Google Scholar 

  162. Lang, W., Eine Methode zur flammenspektrophotometrischen Serum-Rubidium-Bestimmung, Z. f. d. gesamt. exp. Medizin 139, 438 (1965).

    Article  CAS  Google Scholar 

  163. Lang, W., Flammenspektrophotometrische Methode zur Serum-Chlorid-Bestimmung mit der Silberlinie 338,3 mµ, Z. klin. Chemie 3, 186 (1965).

    CAS  Google Scholar 

  164. Bechtler, G., B. Gutsche, R. Herrmann, W. Lang and D. Stamm, Chlorid-Bestimmungen in nativen Humanserum mit Filterflammenphotometern, Z. klin. Chemie und klin. Biochemie 5, 138 (1967).

    CAS  Google Scholar 

  165. Koval, Yu. F., Flame photometric determination of cesium in urine, Lab. Delo 1966 (4), 213.

    Google Scholar 

  166. Stamm, D. and K. RÖtger, Phosphatid-Phosphor-Bestimmung durch Hochtemperatur-Flammenphotometrie mittels eines Plasmabogens, Z. f. klin. Chemie 4, 220 (1966).

    CAS  Google Scholar 

  167. Rozsa, J. T., J. Stone and J. D. Golland, Health Physics Application for Spectrography Monitoring for Beryllium in Air. From: Developments in Appl. Spectroscopy, vol. 3, Forrette and Lantermann, Plenum Press 1963, p. 243.

    Google Scholar 

  168. Beauchene, R. E., A. D. Berneking, W. G. Schrenk, H. L. Mitchell and R. E. Silker, The quantitative estimation of amino nitrogen by determination of bound copper with the flame photometer, J. Biological Chemistry 214, 731 (1955).

    CAS  Google Scholar 

  169. Newton, D. and G. A. Rose, Flame photometry in a metabolic unit laboratory, Zeiss-Mitteilungen über Fortschritte der techn. Optik 3 (9) 365 (1965).

    CAS  Google Scholar 

  170. Vurek, G. G., Emission photometry of picomoles of calcium, magnesium and other metals, Anal. Chem. 39 (13) 1599 (1967).

    Article  CAS  Google Scholar 

  171. Samsahl, K., P. O. Wester and O. LandstrÖm, An automatic group separation system for the simultaneous determination of a great number of elements in biological material, Anal. Chem. 40 (1) 181 (1968).

    Article  CAS  Google Scholar 

  172. Strickland, R. D. and C. M. Maloney, Indirect method for determination of serum in organic sulfate by flame spectrophotom., J. Clin. Path. 24, 1100 (1954).

    CAS  Google Scholar 

  173. Gutsche, B., R. Herrmann and K. RÜdiger, Ein spektrophotometrischer Schnelltest zum Nachweis von organischen Chlorverbindungen, insbesondere zum Nachweis von chlorhaltigen Insektiziden, Fres. Z. f. analyt. Chemie 241, 54 (1968).

    Article  CAS  Google Scholar 

  174. Gutsche, B., and R. Herrmann, Flammenspektrophotometrischer Insektizidnachweis mit einem Filterflammenphotometer, Fres. Z. f. analyt. Chemie 242, 13 (1968).

    Article  CAS  Google Scholar 

  175. Gilbert, P. T., JR., Flame photometric determination of chlorine by indium chloride band emission, Anal. Chem. 38, 1921 (1966).

    Article  Google Scholar 

  176. Beckman Instruments Inc., Flame Photometer, Beckman Instruments Inc., Fullerton (Calif) Bull. 7069 (1966).

    Google Scholar 

  177. Perkin-Elmer Atomabsorptionsspektrophotometer 303 “Mit Concentration Readout” Perkin-Elmer Instr. Div. 1967.

    Google Scholar 

  178. Stamm, D., Tagesschwankungen der Konzentration diagnostisch wichtiger Blutbestandteile, Habilitationsschrift Gießen 1966.

    Google Scholar 

  179. Haagen-Smit, J. W. and J. Ramerez-Muroz, Multichannel integrating flame photometer, Anal. Chim. Acta 36, 469 (1966).

    Article  CAS  Google Scholar 

  180. Davis, H. M., G. P. Fox, R. J. Webb and P. C. Wildy, A general purpose integrating flame photometer, Atomic Energy Research Establishment, Harwell AERE C/R 2659 (1960).

    Google Scholar 

  181. Margoshes, M. and B. V. Vallee, A multichannel flame spectrometer employing automatic background correction, Anal. Chem. 27, 320 (1955).

    Article  Google Scholar 

  182. Lang, W., Absorptionsflammenspektrometrische Analysen mit Mikroliterproben, Mikrochim. Acta 1963, 872.

    Google Scholar 

  183. Birks, F. T., The application of the hollow cathode source to spectrographic analysis, Spectrochim. Acta 6, 169 (1954).

    Article  CAS  Google Scholar 

  184. Erdey, L., E. Gegus and E. Kocsts, Spectrochemical analysis of solutions by means of hollow electrodes, Acta. Chim. Acad. Sci. Hung. 7, 343 (1955).

    CAS  Google Scholar 

  185. Massmann, H., Hohlkathoden für konstante Intensitätsverhältnisse der Spektren verschiedener Elemente, Z. Instr. 71, 225 (1963).

    CAS  Google Scholar 

  186. Grimm, W., Glimmentladungslampe für spektralanalytische Routinemessungen, Die Naturwissenschaften 54, 586 (1967).

    Article  CAS  Google Scholar 

  187. Odintsov, V. L., An atomic beam as light source for studying spectra of gases, Optic and Spectr. 10, 203 (1961).

    Google Scholar 

  188. Pietzka, G. and H. U. Caum, Flammenphotometrie I, Angew. Chemie 71, 276 (1959).

    Article  CAS  Google Scholar 

  189. Baker, M. R. and B. L. Vallee, A theory of spectral excitation in flames as a function of sample flow, Anal. Chem. 31, 2036 (1959).

    Article  CAS  Google Scholar 

  190. Puschel, R., L. Simon and R. Herrmann, Über die Verluste von Na-Atomen bei der Durchführung von flammenspektrophotometrischen Analysen mit turbulenten 02–112-Flammen, Optik 21, 441 (1964).

    Google Scholar 

  191. Fukushima, S., M. Shigemoto, I. Kato and K. Otozai, A relationship between interfering substances in flame spectrophotometry, Mikrochim. Acta 1957, 35.

    Google Scholar 

  192. Fukushima, S., K. Yukawa, M. Shigemoto and K. Otozal, Another new application of standard additions technique in flame spectrophotometry, Mikrochim. Acta 1958, 553.

    Google Scholar 

  193. Allos, M. D., The use of pre-mixed flames of nitrous oxide and acetylene in flame emission and atomic absorption, The Element, Techtron (Australia) Nr. 7, 1967.

    Google Scholar 

  194. Herrmann, R. and W. Rica, Verbesserung der flammenspektrophotometrischen Serum-CaAnalysen durch Zusätze von Athylendiamintetraessigsäure, Die Naturwissenschaften 46, 492 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1970 N.V. Philips’ Gloeilampenfabrieken

About this chapter

Cite this chapter

Herrmann, R. (1970). The Applications of Flame Photometry in Biology and Medicine. In: Mavrodineanu, R. (eds) Analytical Flame Spectroscopy. Philips Technical Library. Palgrave, London. https://doi.org/10.1007/978-1-349-01008-0_9

Download citation

Publish with us

Policies and ethics