Sodium-Calcium Exchange Across the Nerve Cell Membrane

  • P. F. Baker
Part of the Biological Council book series


If the intracellular concentration of free calcium were determined solely by the Donnan ratio, then calcium should be accumulated in most cells. In quantitative terms, with an internal potential 50–60 mV negative to the outside and external calcium concentrations of 1–10 mm, the predicted intracellular concentration of free calcium should be 0·1–1·0 M. These values are very different from those found by experiment. In the few large nerve and muscle cells where direct measurement has proved possible, the free intracellular calcium concentration is at most 10−5 m and may be as low as 10−7 m (Hodgkin & Keynes, 1955; Portzehl, Caldwell & Rüegg, 1964; Luxoro & Yanez, 1968). A discrepancy in this direction must mean that in these cells Ca ions are actively excluded from the cytoplasm. Although comparable measurements have not been possible, it seems likely that most other cells behave similarly.


Free Calcium Cardiac Glycoside Donnan Ratio Squid Axon Free Intracellular Calcium Concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P. F. (1968). J. gen. Physiol. 51, 172sPubMedGoogle Scholar
  2. Baker, P. F. and Blaustein, M. P. (1968). Biochim. biophys. Acta, 150, 167CrossRefPubMedGoogle Scholar
  3. Baker, P. F., Blaustein, M. P., Hodgkin, A. L. and Steinhardt, R. A. (1967). J. Physiol., Lond., 192, 43 pCrossRefGoogle Scholar
  4. Baker, P. F., Blaustein, M. P., Hodgkin, A. L. and Steinhardt, R. A. (1969). J. Physiol., Lond., 200, 431PubMedCentralCrossRefPubMedGoogle Scholar
  5. Baker, P. F., Blaustein, M. P., Manil, J. and Steinhardt, R. A. (1967). J. Physiol., Lond., 191, 100 pCrossRefGoogle Scholar
  6. Banks, P. (1967). J. Physiol., Lond., 193, 631PubMedCentralCrossRefPubMedGoogle Scholar
  7. Banks, P., Biggins, R., Bishop, R., Christian, B. and Currie, N. (1969). J. Physiol., Lond., 200, 745PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bihler, I. (1968). Biochim. biophys. Acta, 163, 401CrossRefPubMedGoogle Scholar
  9. Birks, R. I., Burstyn, P. G. R. and Firth, D. R. (1968). J. gen. Physiol., 52, 887PubMedCentralCrossRefPubMedGoogle Scholar
  10. Birks, R. I. and Cohen, M. W. (1968a). Proc. R. Soc., B, 170, 381CrossRefGoogle Scholar
  11. Birks, R. I. and Cohen, M. W. (1968b). Proc. R. Soc., B, 170, 401CrossRefGoogle Scholar
  12. Blaustein, M. P. and Hodgkin, A. L. (1969). J. Physiol., Lond., 200, 497PubMedCentralCrossRefPubMedGoogle Scholar
  13. Bourke, R. S. and Tower, D. B. (1966). J. Neurochem., 13, 1099CrossRefPubMedGoogle Scholar
  14. Brinley, F. J. and Mullins, L. J. (1968). J. gen. Physiol., 52, 181PubMedCentralCrossRefPubMedGoogle Scholar
  15. Caldwell, P. D., Hodgkin, A. L., Keynes, R. D. and Shaw, T. I. (1960). J. Physiol., Lond., 152, 561PubMedCentralCrossRefPubMedGoogle Scholar
  16. Cosmos, E. and Harris, E. J. (1961). J. gen. Physiol., 44, 1121PubMedCentralCrossRefPubMedGoogle Scholar
  17. Garrahan, P. J. and Glynn, I. M. (1967). J. Physiol., Lond., 192, 237PubMedCentralCrossRefPubMedGoogle Scholar
  18. Glynn, I. M. (1969). Digitalis (University of Indiana Symposium, 1966), ed. Fisch, C. and Surawicz, B. New York: Grune and StrattonGoogle Scholar
  19. Goodford, P. J. (1967). J. Physiol., Lond., 192, 145PubMedCentralCrossRefPubMedGoogle Scholar
  20. Hales, C. N. and Milner, R. D. G. (1968a). J. Physiol., Lond., 194, 725PubMedCentralCrossRefPubMedGoogle Scholar
  21. Hales, C. N. and Milner, R. D. G. (1968b). J. Physiol., Lond., 199, 177PubMedCentralCrossRefPubMedGoogle Scholar
  22. HO, R. J. and Jeanrenaud, B. (1967). Biochim. biophys. Acta, 144, 61CrossRefPubMedGoogle Scholar
  23. Hodgkin, A. L. and Keynes, R. D. (1955). J. Physiol., Lond., 128, 28PubMedCentralCrossRefPubMedGoogle Scholar
  24. Judah, J. D. and Ahmed, K. (1964). Biol. Rev., 39, 160CrossRefPubMedGoogle Scholar
  25. Luxoro, M. and Yanez, E. (1968). J. gen. Physiol. 51, suppl. 115Google Scholar
  26. Muchnik, S. and Venosa, R. A. (1969). Nature, Lond., 222, 169CrossRefGoogle Scholar
  27. Niedergerke, R. (1963). J. Physiol., Lond., 167, 515PubMedCentralCrossRefPubMedGoogle Scholar
  28. Portzehl, H., Caldwell, P. C. andEgg, J. C. (1964). Biochim. biophys. Acta, 79, 581Google Scholar
  29. Rang, H. P. and Ritchie, J. M. (1968). J. Physiol., Lond., 196, 163PubMedCentralCrossRefPubMedGoogle Scholar
  30. Reuter, H. and Seitz, N. (1968). J. Physiol., Lond., 195, 451PubMedCentralCrossRefPubMedGoogle Scholar
  31. Rojas, E. and Hidalgo, C. (1968). Biochim. biophys. Acta, 163, 550CrossRefPubMedGoogle Scholar
  32. Ruscak, M. and Whittam, R. (1967). J. Physiol., Lond., 190, 595PubMedCentralCrossRefPubMedGoogle Scholar
  33. Tower, D. B. (1968). Exp. Brain Res., 6, 273CrossRefPubMedGoogle Scholar
  34. Wilbrandt, W. (1966). In The Myocardial Cell: Structure, Function and Modification by Cardiac Drugs, ed. Briller, S. A and Conn, H. L. Jr., p. 297. Philadelphia: Univ. of Pennsylvania PressGoogle Scholar
  35. Wollenberger, A. (1947). J. Pharmac. exp. Ther., 91, 39Google Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1970

Authors and Affiliations

  • P. F. Baker
    • 1
  1. 1.The Physiological LaboratoryCambridgeUK

Personalised recommendations