Activation and Inhibition of the Sarcoplasmic Calcium Transport

  • W. Hasselbach
  • M. Makinose
  • W. Fiehn
Part of the Biological Council book series


Many observations suggest that all cells possess transport systems for the elimination of ionized calcium from the cytoplasm. Presumably no cell can tolerate high concentrations of free calcium ions intracellularly, but so far the concentration of free calcium ions which can be tolerated is known for only one cell with any degree of accuracy. In the resting giant muscle fibres of Maia (Portzehl, Caldwell & Rüegg, 1964) and Balanus (Hagiwara, 1966) the free calcium concentration has been found not to exceed 5 × 10−7 m. On the other hand, these muscles like any other muscle need relatively large amounts of calcium ions for the activation of their contractile machinery (Weber & Herz, 1963; Jöbsis, 1967; Ashley & Ridgway, 1969). These quantities are presumably liberated in a few milliseconds during excitation. The removal of these ions from the cytoplasm brings activation to a halt, and at room temperature the time required for this process is in the range of 10–100 msec. In skeletal muscles these rapid calcium movements take place mainly across the membranes of the sarcoplasmic reticulum. The sarcoplasmic membranes are especially suitable objects for studying the mechanism of and the structural basis for the active transport of calcium ions.


Calcium Oxalate Calcium Transport Oxalate Concentration Free Calcium Concentration Transport Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashley, C. C. & Ridgway, E. B. (1969). J. Physiol., Lond., 200, 74 PGoogle Scholar
  2. Balzer, H., Makinose, M. & Hasselbach, W. (1968). Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak., 260, 456CrossRefGoogle Scholar
  3. Balzer, H., Makinose, M., Fiehn, H., & Hasselbach, W. (1968). Naunyn-Schmeiderberg’s Arch. exp. Path. Pharmak., 260, 454Google Scholar
  4. Eigen, M. & DE Meyer, L. (1963). Relaxation Methods. Techn. Organic Chem., Viii, II, p. 1041. New York: InterscienceGoogle Scholar
  5. Hagiwara, S. (1966). Ann. N.Y. Acad. Sci., 137, 1015CrossRefPubMedGoogle Scholar
  6. Hasselbach, W. & Elfvin, L.-G. (1967). J. ultrastruct. Res., 17, 598CrossRefPubMedGoogle Scholar
  7. Hasselbach, W. & Makinose, M. (1961). Biochem. Z., 333, 518PubMedGoogle Scholar
  8. Hasselbach, W. & Makinose, M. (1963). Biochem. Z., 339, 94PubMedGoogle Scholar
  9. Hasselbach, W. & Seraydarian, K. (1966). Biochem. Z., 345, 159Google Scholar
  10. Heinz, E., cited by Netter, H. (1959). Theoretische Biochemie, p. 725. Berlin: Springer-VerlagGoogle Scholar
  11. Bsis, F. F. (1967). Symp. Biol. Hung., 8, 151Google Scholar
  12. Makinose, M. (1966a). Biochem. Z., 345, 80Google Scholar
  13. Makinose, M. (1966b). 2nd Int. Biophys. Congr. Wien p. 276Google Scholar
  14. Makinose, M. & Hasselbach, W. (1965). Biochem. Z., 343, 360PubMedGoogle Scholar
  15. Makinose, M. (1969). Europ. J. Biochem., 10, 74CrossRefPubMedGoogle Scholar
  16. Portzehl, H., Caldwell, C. P. & RÜEgg, J. C. (1964). Biochem. biophys. Acta, 79, 581PubMedGoogle Scholar
  17. Weber, A. & Herz, R. (1963). J. biol. Chem., 238, 599PubMedGoogle Scholar
  18. Weber, A., Herz, R. & Ross, I. (1966). Biochem. Z., 345, 329Google Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1970

Authors and Affiliations

  • W. Hasselbach
    • 1
  • M. Makinose
    • 1
  • W. Fiehn
    • 1
  1. 1.Max-Planck-Institut PhysiologieHeidelbergGermany

Personalised recommendations