Divalent Cations and Cell Adhesion

  • D. Gingell
  • D. R. Garrod
  • J. F. Palmer
Part of the Biological Council book series


Divalent cations have long been known to play a crucial part in the adhesive functions of cells. As long ago as 1894 Roux showed that media lacking Ca2+ ions aided the disaggregation of frog embryos. Herbst (1900) discovered that the blastomeres of echinoderm embryos fall apart in Ca2+ free seawater, though it is now known that the principal effect is dissolution of the hyaline capsule. Later workers frequently used chelating agents, most commonly sodium salts of ethylenediaminetetracetic acid (EDTA), to help the removal of divalent cation and bring about disaggregation. Its effectiveness has been demonstrated by Anderson (1953) on mammalian cells, by Zwilling (1954) on chick embryos, by Coman (1954) in adult rat liver, and by Curtis (1967) on amphibian embryos. Because EDTA chelates divalent cations in the preferential sequence
however, disaggregation in EDTA might be connected with chelation of less strongly bound cations, as well as Ca2+. EGTA which is potentially capable of distinguishing between Ca2+ and Mg2+, since the respective stability constants of Ca2+ and Mg2+ complexes are 1011 and 105, does not seem to have been utilized for this purpose.


Divalent Cation Surface Charge Density Slime Mould Toad Bladder Amphibian Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. G. (1953). Science, N. Y., 117, 627CrossRefGoogle Scholar
  2. Armstrong, P. B. (1966). J. exp. Zool., 163, 99CrossRefPubMedGoogle Scholar
  3. Armstrong, P. B. & Jones, D. P. (1968). J. exp. Zool., 167, 275CrossRefPubMedGoogle Scholar
  4. Bangham, A. D. & Pethica, B. A. (1961). Proc. R. Soc. Edin., 28, 43Google Scholar
  5. Brooks, D. E., Millar, J. S., Seaman, G. V. F. & Vassar, P. S. (1967). J. cell. Physiol., 69, 155CrossRefPubMedGoogle Scholar
  6. Collins, M. (1966). J. exp. Zool., 163, 39CrossRefPubMedGoogle Scholar
  7. Coman, D. R. (1954). Cancer Res., 14, 519PubMedGoogle Scholar
  8. Curtis, A. S. G. (1957). Proc. R. Phys. Soc. Edin., 26, 25Google Scholar
  9. Curtis, A. S. G. (1962). Biol. Rev., 37, 82CrossRefPubMedGoogle Scholar
  10. Curtis, A. S. G. (1967). The Cell Surface: Its Molecular Role in Morphogenesis. New York: Academic PressGoogle Scholar
  11. DE Haan, R. L. (1959). J. Embryol. exp. Morph., 7, 335Google Scholar
  12. Gerisch, G. (1961). Exp. cell. Res., 25, 535CrossRefPubMedGoogle Scholar
  13. Gingell, D. (1967). Ph.D. thesis, University of LondonGoogle Scholar
  14. Gingell, D. & Garrod, D. R. (1969). Nature, Lond., 221, 192CrossRefGoogle Scholar
  15. Gingell, D. & Palmer, J. F. (1968). Nature, Lond., 217, 98CrossRefGoogle Scholar
  16. Gustafson, T. & Wolpert, L. (1967). Biol. Rev., 42, 442CrossRefPubMedGoogle Scholar
  17. Herbst, C. (1900). Arch. Entwickmech., 9, 424Google Scholar
  18. Lipman, K. M., Dodelson, R. & Hays, R. M. (1966). J. gen. Physiol., 49, 501PubMedCentralCrossRefPubMedGoogle Scholar
  19. Morgan, J., Fyfe, D. & Wolpert, L. (1967). Exp. cell Res., 48, 194CrossRefPubMedGoogle Scholar
  20. Moscona, A. A. (1968). Dey. Biol., 18, 250CrossRefGoogle Scholar
  21. Pethica, B. A. (1961). Exp. cell Res., suppl., 8, 123Google Scholar
  22. Roux, W. (1894). Arch. Entwickmech., 1, 43Google Scholar
  23. Steinberg, M. S. (1958). Am. Nat., 92, 65CrossRefGoogle Scholar
  24. Steinberg, M. S. (1962). In Biological Interactions in Normal and Neoplastic Growth, ed. Brennan, M. J. and Simpson, W. I. Boston: Little, Brown & Co.Google Scholar
  25. Weiss, L. (1960). Exp. cell Res., 21, 71CrossRefPubMedGoogle Scholar
  26. Weiss, L. (1964). J. theor. Biol., 6, 275CrossRefPubMedGoogle Scholar
  27. Weiss, L. (1967). J. cell Biol., 35, 347PubMedCentralCrossRefPubMedGoogle Scholar
  28. Whitefield, F. E. (1964). Exp. cell Res., 36, 62CrossRefGoogle Scholar
  29. Wolpert, L. & Gingell, D. (1968). Symp. Soc. exp. Biol., 22, 169PubMedGoogle Scholar
  30. Zwilling, E. (1954). Science, N.Y., 120, 219CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1970

Authors and Affiliations

  • D. Gingell
    • 1
  • D. R. Garrod
    • 1
  • J. F. Palmer
    • 2
  1. 1.Department of Biology as Applied to MedicineMiddlesex Hospital Medical SchoolLondonUK
  2. 2.Department of PhysiologyMiddlesex Hospital Medical SchoolLondonUK

Personalised recommendations