Advertisement

Aequorin-Calcium luminescence and Its Application to Muscle Physiology

  • C. C. Ashley
  • E. B. Ridgway
Part of the Biological Council book series

Abstract

There is much evidence to suggest that small transient changes in intracellular calcium play an important intermediate role in the complex process of excitation-contraction (E-C) coupling in skeletal muscle (Weber, Herz & Reiss, 1964; Portzehl, Caldwell & Rüegg, 1964; Jöbsis & O’Connor, 1966; Hellam & Podolsky, 1969). These changes in intracellular calcium can now be monitored during the contraction of a single muscle fibre by a photometric method (Ridgway & Ashley, 1967; Ashley & Ridgway, 1968, 1969, in preparation; Ashley, 1969). The method uses the remarkable properties of the photoprotein, aequorin, which is extracted from the photogenic organs of the hydromedusa, Aequorea forskalea.

Keywords

Hypertonic Saline Calcium Transient Tension Response Isometric Tension Potassium Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashley, C. C. (1967). In Comparative Aspects of Muscle, ed. Hoyle, G., Amer. Zool., 7, 647Google Scholar
  2. Ashley, C. C. (1969). J. Physiol. Lond., 203, 32 PGoogle Scholar
  3. Ashley, C. C. & Ridgway, E. B. (1968). Nature, Lond., 219, 1168CrossRefGoogle Scholar
  4. Ashley, C. C. & Ridgway, E. B. (1969). J. Physiol. Lond., 200, 74 PGoogle Scholar
  5. Ashley, C. C. & Ridgway, E. B. (1969b). (In preparation)Google Scholar
  6. Fatt, P. & Katz, B. (1953). J. Physiol., Lond., 120, 171PubMedCentralCrossRefPubMedGoogle Scholar
  7. Hagiwara, S. & Naka, K. (1964). J. gen. Physiol., 48, 141PubMedCentralCrossRefPubMedGoogle Scholar
  8. Hagiwara, S., Chichibu, S. & Naka, K. (1964). J. gen. Physiol., 48, 163PubMedCentralCrossRefPubMedGoogle Scholar
  9. Hastings, J. W. (1968). A. Rev. Biochem., 37, 597CrossRefGoogle Scholar
  10. Hastings, J. W., Mitchell, G., Mattingly, P. H., Blinks, J. R. & Van Leeuwen, M. (1969). Nature, Lond., 222, 1047CrossRefGoogle Scholar
  11. Hellam, D. C. & Podolsky, R. J. (1969). J. Physiol. Lond., 200, 807PubMedCentralCrossRefPubMedGoogle Scholar
  12. Hodgkin, A. L., Huxley, A. F. & Katz, B. (1952). J. Physiol., Lond., 116, 424PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hoyle, G. (1965). Science, N.Y., 149, 70CrossRefGoogle Scholar
  14. Hoyle, G. & Smyth, T. (1963). Comp. Biochem. Physiol., 10, 291CrossRefPubMedGoogle Scholar
  15. Huxley, A. F. & Taylor, R. E. (1958). J. Physiol., Lond., 144, 426PubMedCentralCrossRefPubMedGoogle Scholar
  16. Huxley, H. E., Page, S. & Wilkie, D. R. (1963). In Appendix of Dydynska, M. & Wilkie, D. R., J. Physiol., Lond., 169, 312PubMedCentralCrossRefGoogle Scholar
  17. Bsis, F. F. & O’Connor, M. J. (1966). Biochem. biophys. Res. Commun., 25, 246CrossRefPubMedGoogle Scholar
  18. Portzehl, H., Caldwell, P. C. & RÜEgg, C. (1964). Biochim. biophys. Acta, 79, 581PubMedGoogle Scholar
  19. Ridgway, E. B. & Ashley, C. C. (1967). Biochem. biophys. Res. Commun., 29, 229CrossRefPubMedGoogle Scholar
  20. Shimomura, O. & Johnson, F. H. (1969). Biochemistry, N. Y. 8, 3991CrossRefGoogle Scholar
  21. Shimomura, O., Johnson, F. H. & Saiga, Y. (1962). J. cell. comp. Physiol., 59, 223CrossRefPubMedGoogle Scholar
  22. Shimomura, O., Johnson, F. H. & Saiga, Y. (1963). J. cell. comp. Physiol., 62, 1CrossRefGoogle Scholar
  23. van Leeuwen, M. & Blinks, J. R. (1969). Fedn Proc. Fedn Am. Socs exp. Biol. 28, No. 571Google Scholar
  24. Weber, A., Hertz, R. & Russ, I. (1964). Proc. Roy. Soc., B, 160, 489CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1970

Authors and Affiliations

  • C. C. Ashley
    • 1
  • E. B. Ridgway
    • 2
  1. 1.Department of ZoologyUniversity of BristolUK
  2. 2.Department of BiologyUniversity of OregonUK

Personalised recommendations