Interaction of Local Anaesthetics and Calcium with Erythrocyte Membranes

  • J. C. Metcalfe
Part of the Biological Council book series


At present there is little definitive information about the way in which the components of cell membranes are organized, and new experimental approaches to the problem are required. Recent work has been aimed at detecting perturbations in the structure of cell membranes by physical techniques; for example, Cohen, Keynes & Hille (1968) have followed changes in the birefringence and light scattering of nerve membranes during the action potential. Alternatively, probe molecules with suitable spectroscopic properties have been used to report indirectly on the perturbations which they sense within the membrane. These probes may also be expected to provide information about the structure in which they are inserted. Here we describe two probe techniques which make use of magnetic resonance spectroscopy to detect changes in molecular motions within the membrane. Although they depend on quite distinct magnetic resonance phenomena, they provide directly comparable data.


Nuclear Magnetic Resonance Electron Spin Resonance Partition Coefficient Electron Spin Resonance Spectrum Benzyl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Changeux, J. P. (1969). In Nobel Symposium II. Symmetry and Function of Biological Systems at the Macromolecular Level., ed. Engström, Arne & Strandberg, Bor, p. 235Google Scholar
  2. Cohen, L. B., Keynes, R. D. & Hille, B. (1968). Nature, Lond., 218, 438CrossRefGoogle Scholar
  3. Hamilton, C. L. & Mcconnell, H. M. (1968). In Structural Chemistry and Molecular Biology, ed. Rich, A. & Davidson, N., p. 115. New York: W. H. FreemanGoogle Scholar
  4. Hubbell, W. L. & Mcconnell, H. M. (1968). Proc. natl. Acad. Sci. U.S., 61, 12CrossRefGoogle Scholar
  5. Hubbell, W. L. & Mcconnell, H. M. (1969). Proc. natl. Acad. Sci. U.S., 63, 16CrossRefGoogle Scholar
  6. Keith, A. D., Waggoner, H. S. & Griffith, O. H. (1968). Proc. natl. Acad. Sci. U.S., 61, 819CrossRefGoogle Scholar
  7. Maddy, A. H. (1966). Biochim. biophys. Acta, 117, 193CrossRefPubMedGoogle Scholar
  8. Metcalfe, J. C. & Burgen, A. S. V. (1968). Nature, Lond., 220, 587CrossRefGoogle Scholar
  9. Metcalfe, J. C., Seeman, P. M. & Burgen, A. S. V. (1968). Mol. Pharmac., 4, 87Google Scholar
  10. Seeman, P. M. & Weinstock (1966). Biochem. Pharmac., 15, 1737CrossRefGoogle Scholar
  11. Seeman, P. M. (1966a). Int. Rev. Neurobiol., 9, 145CrossRefPubMedGoogle Scholar
  12. Seeman, P. M. (1966b). Biochem. Pharmac., 15, 1632CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1970

Authors and Affiliations

  • J. C. Metcalfe
    • 1
  1. 1.M.R.C. Molecular Pharmacology Research Unit, Department of PharmacologyUniversity of CambridgeUK

Personalised recommendations