Role of Calcium Ions in Neuromuscular Transmission

  • R. Rahamimoff
Part of the Biological Council book series


The important role of calcium ions in neuromuscular transmission was recognized three-quarters of a century ago (Locke, 1894). If a neuromuscular preparation of the frog is immersed in normal Ringer solution, an adequate stimulus to the nerve produces a twitch. When the calcium concentration in the medium is reduced to, say, one-eighth of the normal, a similar stimulus produces no mechanical response. If the effect of partial or total calcium deprivation is examined on the various steps leading from the nerve stimulus to muscle contraction, almost every stage, depending on the experimental conditions and the time of exposure, is found to be affected to some extent: the initiation of the action potential, its conduction along the nerve (Frankenhauser & Hodgkin, 1957; Frankenhauser, 1957), the release of the transmitter from the motor nerve terminal (Katz & Miledi, 1965a), the reaction of the transmitter with the postsynaptic membrane (Takeuchi & Takeuchi, 1962; Nastuk & Liu, 1966), the generation of the action potential in the muscle, and finally the contraction of the muscle (see Sandow, 1965). It appears, however, that the link which is most sensitive to reduction of external calcium is the nerve terminal.


Nerve Terminal Neuromuscular Junction Transmitter Release Neuromuscular Transmission External Calcium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P. F., Blaustein, M. P., Hodgkin, A. L. & Steinhardt, R. A. (1969). J. Physiol., Lond., 200, 431PubMedCentralCrossRefPubMedGoogle Scholar
  2. Birks, R. I. & Cohen, M. W. (1965). In Muscle, ed. Paul, W. M., Daniel, E. D., Kay, C. M. & Monckton, G., p. 403. Oxford: Pergamon PressGoogle Scholar
  3. Birk, R. I. & Cohen, M. W. (1968a). Proc. R. Soc., B, 170, 381CrossRefGoogle Scholar
  4. Birks, R. I. & Cohen, M. W. (1968b). Proc. R. Soc., B, 170, 401CrossRefGoogle Scholar
  5. Blioch, Z. L., Glagoleva, I. M., Liberman, E. A. & Nenashev, V. A. (1968). J. Physiol., Lond., 199, 11PubMedCentralCrossRefPubMedGoogle Scholar
  6. CoLoMO, F. & Rahamimoff, R. (1968). J. Physiol., Lond., 198, 203CrossRefGoogle Scholar
  7. Del Castillo, J. & Engback, L. (1954). J. Physiol., Lond., 124, 370PubMedCentralCrossRefGoogle Scholar
  8. Del Castillo, J. & Katz, B. (1954a). J. Physiol., Lond., 124, 553PubMedCentralCrossRefGoogle Scholar
  9. Del Castillo, J. & Katz, B. (1954b). J. Physiol., Lond., 124, 560PubMedCentralCrossRefGoogle Scholar
  10. Dodge, F. A. & Rahamimoff, R. (1967). J. Physiol., Lond., 193, 419PubMedCentralCrossRefPubMedGoogle Scholar
  11. Dodge, F. A., Miledi, R. & Rahamimoff, R. (1969). J. Physiol., Lond., 200, 267PubMedCentralCrossRefPubMedGoogle Scholar
  12. Douglas, W. W. & Rubin, R. P. (1961). J. Physiol., Lond., 159, 40PubMedCentralCrossRefPubMedGoogle Scholar
  13. Douglas, W. W. & Poisner, A. M. (1964). J. Physiol., Lond., 172, 1PubMedCentralCrossRefPubMedGoogle Scholar
  14. Frankenhauser, B. (1957). J. Physiol., Lond., 137, 245CrossRefGoogle Scholar
  15. Frankenhauser, B. & Hodgkin, A. L. (1957). J. Physiol., Lond., 137, 218CrossRefGoogle Scholar
  16. Hodgkin, A. L. & Katz, B. (1949). J. Physiol., Lond., 108, 37PubMedCentralCrossRefPubMedGoogle Scholar
  17. Hubbard, J. I., Jones, S. F. & Landau, E. M. (1968). J. Physiol., Lond., 196, 75PubMedCentralCrossRefPubMedGoogle Scholar
  18. Hutter, O. F. & Kostial, K. (1954). J. Physiol., Lond., 124, 234PubMedCentralCrossRefPubMedGoogle Scholar
  19. Jenkinson, D. H. (1957). J. Physiol., Lond., 138, 434PubMedCentralCrossRefPubMedGoogle Scholar
  20. Katz, B. (1962). The Croonian Lecture. Proc. R. Soc., B, 155, 455CrossRefGoogle Scholar
  21. Katz, B. (1966). Nerve, Muscle and Synapse, p. 193. New York: McGraw-HillGoogle Scholar
  22. Katz, B. (1969). The release of neural transmitter substances. The Sherrington Lectures, No. X. Liverpool: Liverpool University PressGoogle Scholar
  23. Katz, B. & Miledi, R. (1965a). Proc. R. Soc. B, 161, 453CrossRefGoogle Scholar
  24. Katz, B. & Miledi, R. (1965b). Proc. R. Soc., B, 161, 483CrossRefGoogle Scholar
  25. Katz, B. & Miledi, R. (1965c). Proc. R. Soc., B, 161, 496CrossRefGoogle Scholar
  26. Katz, B. & Miledi, R. (1967a). Nature, Lond., 215, 651CrossRefGoogle Scholar
  27. Katz, B. & Miledi, R. (1967b). Proc. R. Soc., B, 167, 1CrossRefGoogle Scholar
  28. Katz, B. & Miledi, R. (1967c). Proc. R. Soc., B, 167, 23CrossRefGoogle Scholar
  29. Katz, B. & Miledi, R. (1967d). J. Physiol., Lond., 189, 535PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kelly, J. S. (1965). Nature, Lond., 205, 296CrossRefGoogle Scholar
  31. Lineweaver, H. & Burk, D. (1934). J. Am. chem. Soc., 56, 658CrossRefGoogle Scholar
  32. Locke, F. S. (1894). Zbl. Physiol., 8, 166Google Scholar
  33. Miledi, R. (1966). Nature, Lond., 212, 1233CrossRefGoogle Scholar
  34. Miledi, R. & Slater, C. R. (1966). J. Physiol., Lond., 184, 473PubMedCentralCrossRefPubMedGoogle Scholar
  35. Nastuk, W. L. & Liu, Jane H. (1966). Science, N.Y., 154, 266CrossRefGoogle Scholar
  36. Niedergerke, R. & LÜTtgau, H. C. (1957). Nature, Lond., 179, 1066CrossRefGoogle Scholar
  37. Rahamimoff, R. & Colomo, F. (1967). Nature, Lond., 215, 1174CrossRefGoogle Scholar
  38. Sandow, A. (1965). Pharmac. Rev., 17, 265Google Scholar
  39. Takeuchi, A. & Takeuchi, N. (1960). J. Physiol., Lond., 154, 52PubMedCentralCrossRefPubMedGoogle Scholar
  40. Takeuchi, A. & Takeuchi, N. (1962). J. gen. Physiol., 45, 1118CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1970

Authors and Affiliations

  • R. Rahamimoff
    • 1
  1. 1.Department of PhysiologyHebrew University, Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations