Advertisement

Diffusion in Interstitial Alloys

  • J. D. Fast
Chapter
Part of the Philips Technical Library book series (PTL)

Abstract

The diffusion of atoms plays an important part in many processes that can take place in solid metals and alloys. By diffusion we understand here the phenomenon where atoms move through the crystal lattice by jumping from one available site to another. For instance, in iron at room temperature an interstitial nitrogen atom jumps on average once every second from one interstice to another. On the other hand, the jump frequency of atoms that are substitutionally dissolved in a high-melting metal, as for instance the jump frequency of nickel atoms in iron, is negligibly small at room temperature. With rising temperature the rate of diffusion increases rapidly in all metals and alloys.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    F. M. G. Johnson and P. Larose, J. Am. chem. Soc. 46, 1377 (1924) and 49, 312 (1927).Google Scholar
  2. 1.
    W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press, New York (1952).Google Scholar
  3. 2.
    H. Dünwald and C. Wagner, Z. Phys. Chem. B24, 53 (1934).Google Scholar
  4. 1.
    J. D. Fast and M. B. Verrijp, J. Iron Steel Inst. 180, 337 (1955).Google Scholar
  5. 2.
    J. D. Fast and M. B. Verrijp, J. Iron Steel Inst. 176, 24 (1954).Google Scholar
  6. 1.
    G. Euringer, Z. Phys. 96, 37 (1935).Google Scholar
  7. 2.
    M. L. Hill and E. W. Johnson, Acta Metall. 3, 566 (1955).Google Scholar
  8. 3.
    A. G. Edwards, Br. J. Appl. Phys. 8, 406 (1957).Google Scholar
  9. 4.
    W. Eichenauer and A. Pebler, Z. Metallk. 48, 373 (1957).Google Scholar
  10. 5.
    W. Eichenauer, H. Künzig and A. Pebler, Z. Metallk. 49, 220 (1958).Google Scholar
  11. 6.
    W. Eichenauer and G. Müller, Z. Metallk. 53, 321 (1962).Google Scholar
  12. 1.
    R. P. Smith, Acta Metall. 1, 578 (1953).Google Scholar
  13. 1.
    C. Wells, W. Batz and R. F. Mehl, Trans. AIME 188, 553 (1950).Google Scholar
  14. 1.
    C. Matano, Jap. J. Phys. 8, 109 (1933).Google Scholar
  15. 1.
    C. Wells, W. Batz and R. F. Mehl, Trans. AIME 188, 553 (1950).Google Scholar
  16. 1.
    A. D. Smigelskas and E. O. Kirkendall, Trans. AIME 171, 130 (1947).Google Scholar
  17. 1.
    L. S. Darken, Trans. AIME 175, 184 (1948).Google Scholar
  18. 1.
    W. Jost, Diffusion und chemische Reaktion in festen Stoffen, Steinkopff-Verlag, Dresden und Leipzig (1937).Google Scholar
  19. 2.
    L. S. Darken, Trans. AIME180, 430 (1949).Google Scholar
  20. 1.
    R. P. Smith, J. Am. chem. Soc. 70, 2724 (1948).Google Scholar
  21. 1.
    P. Frank and R. Von Mises, Die Differential- und Integralgleichungen der Mechanik und Physik, Braunschweig (1935).Google Scholar
  22. J. Crank, Mathematics of Diffusion, Oxford (1956).MATHGoogle Scholar
  23. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford (1959).Google Scholar
  24. 1.
    W. Eichenauer and A. Pebler, Z. Metallk. 48, 373 (1957).Google Scholar
  25. 2.
    W. Eichenauer, W. Löser and H. Witte, Z. Metallk. 56, 287 (1965).Google Scholar
  26. 3.
    W. Eichenauer, H. Künzig and A. Pebler, Z. Metallk. 49, 220 (1958).Google Scholar
  27. 4.
    W. Eichenauer and D. Liebscher, Z. Naturf. 17a, 355 (1962).Google Scholar
  28. 5.
    C. Sykes, H. H. Burton and C. C. Gegg, J. Iron Steel Inst. 156, 155 (1947).Google Scholar
  29. 6.
    W. Geller and T. H. Sun, Arch. Eisenhütt Wes. 21, 423 (1950).Google Scholar
  30. 7.
    Y. Ebisuzaki, W. J. Kass and M. O’keeffe, J. Chem. Phys. 46, 1378 (1967).Google Scholar
  31. 8.
    M. L. Hill and E. W. Johnson, Acta metall. 3, 566 (1955).Google Scholar
  32. 9.
    A. G. Edwards, Br. J. Appl. Phys. 8, 406 (1957).Google Scholar
  33. 10.
    W. Jost and A. Widmann, Z. phys. Chem. (B) 45, 285 (1940).Google Scholar
  34. 11.
    O. M. Katz and E. A. Gulbransen, Rev. scient. Instrum. 31, 615 (1960).Google Scholar
  35. 12.
    J. W. Simons and T. B. Flanagan, J. phys. Chem., Ithaca 69, 3581 (1965).Google Scholar
  36. 13.
    D. T. Peterson and D. G. Westlake, J. phys. Chem., Ithaca 64, 649 (1960).Google Scholar
  37. 14.
    R. J. Wasilewski and G. L. Kehl, Metallurgia 50, 225 (1954).Google Scholar
  38. 15.
    M. W. Mallett and W. M. Albrecht, J. electrochem. Soc. 104, 142 (1957).Google Scholar
  39. 16.
    C. R. Cupp and P. Flubacher, J. Nucl. Mater. 6, 213 (1962).Google Scholar
  40. 17.
    V. L. Gelezunas, P. K. Conn and R. H. Price, J. electrochem. Soc. 110, 799 (1963).Google Scholar
  41. 18.
    T. M. Stross and F. C. Tompkins, J. Chem. Soc. 230 (1956).Google Scholar
  42. 19.
    E. W. Johnson and M. L. Hill, Trans. AIME 218, 1104 (1960).Google Scholar
  43. 20.
    R. Wagner and R. Sizmann, Z. angew. Phys. 18, 193 (1964).Google Scholar
  44. 21.
    W. M. Albrecht, W. D. Goode and M. W. Mallett, J. electrochem. Soc. 106, 981 (1959).Google Scholar
  45. 22.
    R. P. Smith, Trans. AIME 230, 476 (1964).Google Scholar
  46. 23.
    C. Wells, W. Batz and R. F. Mehl, Trans. AIME 188, 553 (1950).Google Scholar
  47. 24.
    P. Grieveson and E. T. Turkdogan, Trans. AIME 230, 407 (1964).Google Scholar
  48. 25.
    J. H. Swisher and E. T. Turkdogan, Trans. AIME 239, 426 (1967).Google Scholar
  49. W. Frank, H. J. Engell and A. Seeger, Trans. AIME 242, 749 (1968).Google Scholar
  50. 26.
    W. Eichenauer and G. Müller, Z. Metallk. 53, 321, 700 (1962).Google Scholar
  51. 27.
    D. T. Peterson, Trans. AIME 221, 924 (1961).Google Scholar
  52. 28.
    R. J. Wasilewski and G. L. Kehl, J. Inst. Metals 83, 94 (1954).Google Scholar
  53. 29.
    M. W. Mallett, W. M. Albrecht and P. R. Wilson, J. electrochem. Soc. 106, 181 (1959).Google Scholar
  54. 30.
    G. Beranger and P. Lacombe, J. Nucl. Mater. 16, 190 (1965).Google Scholar
  55. 31.
    J. P. Pemsler, J. electrochem. Soc. Ill, 1185 (1964).Google Scholar
  56. 32.
    M. W. Mallett, J. Belle and B. B. Cleland, J. electrochem. Soc. 101, 1 (1954).Google Scholar
  57. 33.
    F. Claisse and H. P. Koenig, Acta Metall. 4, 650 (1956).Google Scholar
  58. 34.
    A. E. Lord and D. N. Beshers, Acta Metall. 14, 1659 (1966).Google Scholar
  59. 35.
    M. E. De Morton, J. Appl. Phys. 33, 2768 (1962).Google Scholar
  60. 36.
    M. J. Klein and A. H. Clauer, Trans. AIME 233, 1771 (1965).Google Scholar
  61. 37.
    M. J. Klein, J. Appl. Phys. 38, 167 (1967).Google Scholar
  62. 38.
    P. S. Rudman, Trans. AIME 239, 1949 (1967).Google Scholar
  63. 39.
    R. W. Powers and M. V. Doyle, Acta Metall. 4, 233 (1956).Google Scholar
  64. 40.
    T. P. Papazoglou and M. T. Hepworth, Trans. AIME 242, 682 (1968).Google Scholar
  65. 41.
    R. Frauenfelder, J. Chem. Phys. 48, 3966 (1968).Google Scholar
  66. 42.
    R. L. Pastorek and R. A. Rapp, Trans. AIME 245, 1711 (1969).Google Scholar
  67. 43.
    A. F. Gerds and M. W. Mallett, J. electrochem. Soc. 101, 175 (1954).Google Scholar
  68. 44.
    J. H. Evans and B. L. Eyre, Acta Metall. 17, 1109 (1969).Google Scholar
  69. 45.
    H. Jehn and E. Fromm, J. less-common Metals 21, 333 (1970).Google Scholar
  70. 46.
    S. V. Zemskiy and M. N. Spasskiy, Physics Metals Metallogr., Wash. 21, 129 (1966).Google Scholar
  71. 47.
    C. A. Wert, Physics Chem. Solids 31, 1771 (1970).Google Scholar
  72. 2.
    J. Piper, J. Appl. Phys. 37, 715 (1966).Google Scholar
  73. 1.
    S. Glasstone, K. J. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  74. 2.
    C. A. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).Google Scholar
  75. 3.
    C. A. Wert, Phys. Rev. 79, 601 (1950).Google Scholar
  76. 4.
    F. Seitz, Phase Transformations in Solids (edited by R. Smoluchowski), John Wiley, New York (1951), Chapter 4.Google Scholar
  77. 5.
    C. Zener, Imperfections in Nearly Perfect Crystals (edited by W. Shockley), John Wiley, New York (1952), Chapter 11.Google Scholar
  78. 6.
    G. H. Vineyard, Physics Chem. Solids 3, 121 (1957).Google Scholar
  79. 7.
    O. Manley, Physics Chem. Solids 13, 244 (1960).Google Scholar
  80. 1.
    J. Bergsma and J. A. Goedkoop, Physicals Grav. 26, 744 (1960).Google Scholar
  81. 1.
    J. W. Simons and T. B. Flanagan, J. phys. Chem., Ithaca 69, 3581 (1965).Google Scholar
  82. 2.
    M. L. Hill and E. W. Johnson, Acta Metall. 3, 566 (1955).Google Scholar
  83. 3.
    C. A. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).Google Scholar
  84. 1.
    C. Zener in Imperfections in Nearly Perfect Crystals (ed. W. Shockley), John Wiley, New York (1952), p. 289.Google Scholar
  85. 1.
    E. W. Johnson and M. L. Hill, Trans. AIME 218, 1104 (1960).Google Scholar
  86. 1.
    J. D. Hobson, J. Iron Steel Inst. 189, 315 (1958).Google Scholar
  87. 2.
    F. R. Coe and J. Moreton, J. Iron Steel Inst. 204, 366 (1966).Google Scholar
  88. 1.
    J. D. Fast, Philips tech. Rev. 6, 365 (1941) and 7, 74 (1942).Google Scholar
  89. 2.
    L. S. Darken and R. P. Smith, Corrosion 5, 1 (1949).Google Scholar
  90. 3.
    T. G. Owe Berg, Corrosion 14, 562t (1958).Google Scholar
  91. 1.
    R. M. Hudson, W. G. Norris and G. L. Stragand, Ind. Engng Chem. int. Edn 51, 319 (1959).Google Scholar
  92. 2.
    R. M. Hudson, K. J. Riedy and G. L. Stragand, Corrosion 16, 115t (1960) and 18, 79t (1962).Google Scholar
  93. 3.
    R. M. Hudson and G. L. Stragand, Corrosion 16, 253t (1960).Google Scholar
  94. 1.
    M. Dadian and S. Talbot-Besnard, C. R. hebd. Séanc. Acad. Sci., Paris 260, 1940 (1965).Google Scholar
  95. 1.
    A. Mcnabb and P. K. Foster, Trans. AIME 227, 618 (1963).Google Scholar
  96. 2.
    P. K. Foster, A. Mcnabb and C. M. Payne, Trans. AIME 233, 1022 (1965).Google Scholar
  97. 1.
    M. L. Hill and E. W. Johnson, Trans. AIME 221, 622 (1961).Google Scholar
  98. 2.
    M. H. Armbruster, J. Am. Chem. Soc. 65, 1043 (1943).Google Scholar
  99. 3.
    W. Geller and T. H. Sun, Arch. Eisenhütt. Wes. 21, 423 (1950).Google Scholar
  100. 1.
    I. Class, Stahl Eisen 80, 1117 (1960).Google Scholar
  101. 2.
    L. C. Weiner, Corrosion 17, 109 (1961).Google Scholar
  102. 3.
    H. H. Podgurski, Trans. AIME 221, 389 (1961).Google Scholar
  103. 4.
    J. G. Morlet, H. H. Johnson and A. R. Troiano, J. Iron Steel Inst. 189, 37 (1958) and Trans. AIME 212, 528 (1958).Google Scholar
  104. 5.
    E. A. Steigerwald, F. W. Schaller and A. R. Troiano, Trans. AIME 215, 1048 (1959) and 218, 832 (1960).Google Scholar
  105. 6.
    W. Beck, J. O’M. Bockris, J. Mcbreen and L. Nanis, Proc. R. Soc. A290, 220 (1966).Google Scholar
  106. 1.
    C. A. Wert, Phys. Rev. 79, 601 (1950).Google Scholar
  107. 2.
    J. K. Stanley, Trans. AIME 185, 752 (1949).Google Scholar
  108. 3.
    W. R. Thomas and G. M. Leak, Phil. Mag. 45, 986 (1954).Google Scholar
  109. 4.
    R. R. Hasiguti and G. Kamoshita, J. phys. Soc. Japan 9, 646 (1954).Google Scholar
  110. 5.
    L. Guillet and B. Hocheid, Revue Métall., Paris 53, 122 (1956).Google Scholar
  111. 6.
    R. E. Maringer, J. Appl. Phys. 31, 229S (1960) and 35, 2375 (1964).Google Scholar
  112. 7.
    A. E. Lord and D. N. Beshers, Acta Metall. 14, 1659 (1966).Google Scholar
  113. 1.
    R. P. Smith, Trans. AIME 224, 105 (1962).Google Scholar
  114. 2.
    C. G. Homan, Acta Metall 12, 1071 (1964).Google Scholar
  115. 1.
    H. Wagenblast and A. C. Damask, Physics Chem. Solids 23, 221 (1962) and Acta Metall. 10, 333 (1962).Google Scholar
  116. 2.
    F. E. Fujita and A. C. Damask, Acta Metall. 12, 331 (1964).Google Scholar
  117. 3.
    R. A. Arndt and A. C. Damask, Acta Metall. 12, 341 (1964).Google Scholar
  118. 4.
    H. Wagenblast, F. E. Fujita and A. C. Damask, Acta Metall. 12, 347 (1964).Google Scholar
  119. 5.
    R. A. Johnson and A. C. Damask, Acta Metall. 12, 443 (1964).Google Scholar
  120. 6.
    R. A. Johnson, G. J. Dienes and A. C. Damask, Acta Metall. 12, 1215 (1964).Google Scholar
  121. 7.
    R. B. Mclellan, M. L. Rudee and T. Ishibachi, Trans. AIME 233, 1938 (1965).Google Scholar
  122. 8.
    D. N. Beshers, J. Appl. Phys. 36, 290 (1965).Google Scholar
  123. 1.
    L. J. Dijkstra, Philips Res. Rep. 2, 357 (1947).Google Scholar
  124. 2.
    C. Wells, W. Batz and R. F. Mehl, Trans. AIME 188, 553 (1950).Google Scholar
  125. 3.
    R. P. Smith, Acta Metall. 1, 578 (1953).Google Scholar
  126. 1.
    A. E. Lord and D. N. Beshers, Acta Metall. 14, 1659 (1966).Google Scholar
  127. 1.
    W. T. Read, Dislocations in Crystals, McGraw-Hill, New York (1953).MATHGoogle Scholar
  128. 2.
    N. F. Mott, Proc. phys. Soc. 60, 391 (1948).Google Scholar
  129. 3.
    R. E. Hoffman and D. Turnbull, J. Appl. Phys. 22,634 and 984 (1951).Google Scholar
  130. D. Turnbull Atom Movements, Am. Soc. Metals, Cleveland (1951), p. 129.Google Scholar
  131. 1.
    C. Leymonie and P. Lacombe, Revue Métall., Paris 54, 653 (1957). See also their contribution to the book La Diffusion dans les Métaux (editors J. D. Fast, H. G. van Bueren and J. Philibert), Philips Technical Library, Eindhoven (1957).Google Scholar
  132. 2.
    B. Okkerse, T. J. Tiedema and W. G. Burgers, Acta Metall. 3, 300 (1955).Google Scholar
  133. 3.
    R. E. Hoffman, Acta Metall. 4, 97 (1956).Google Scholar
  134. 4.
    J. C. Fisher, J. Appl. Phys. 22, 74 (1951).Google Scholar
  135. 5.
    R. T. P. Whipple, Phil. Mag. 45, 1225 (1954).Google Scholar
  136. 6.
    H. S. Levine and C. J. Maccallum, J. Appl. Phys. 31, 595 (1960).Google Scholar
  137. 7.
    T. Suzuoka, Trans. Japan Inst. Metals 2, 25 (1961).Google Scholar
  138. 8.
    L. C. Luther, J. Chem. Phys. 45, 1080 (1966).Google Scholar
  139. 9.
    J. P. Stark, J. Appl. Phys. 36, 3938 (1965).Google Scholar
  140. 1.
    R. S. Barnes, G. B. Redding and A. H. Cottrell, Phil. Mag. 3, 97 (1958).Google Scholar
  141. 2.
    R. S. Barnes, Colloque sur la Diffusion à l’Etat solide (editor: G. Chaudron), North Holland Publ. Co., Amsterdam (1959), p. 57.Google Scholar
  142. 3.
    R. S. Barnes, Phil. Mag. 5, 635 (1960).Google Scholar
  143. 4.
    R. S. Barnes and D. J. Mazey, Proc. R. Soc. A275, 47 (1963).Google Scholar
  144. 1.
    G. T. Murray, J. Appl. Phys. 32, 1045 (1961).Google Scholar
  145. 2.
    R. S. Barnes and D. J. Mazey, Proc. R. Soc. A275, 47 (1963) and Mém. Scient. Revue Métall 63, 81 (1966).Google Scholar
  146. 1.
    R. S. Barnes, J. Nucl. Mater. 11, 135 (1964) and R. S. Nelson, J. Nucl. Mater. 19, 149 (1966).Google Scholar
  147. 2.
    F. A. Nichols, J. Nucl. Mater. 30, 143 (1969).Google Scholar
  148. 3.
    H. Mykura, Phil. Mag. 4, 907 (1959).Google Scholar
  149. 4.
    W. W. Mullins, J. Appl. Phys. 28, 333 (1957) and 30, 77 (1959). See also his article in the book Metal Surfaces (editors: W. D. Robertson and N. A. Gjostein), Am. Soc. Metals, Cleveland (1963).Google Scholar
  150. 1.
    J. C. Chaston, J. Inst. Metals 71, 23 (1945).Google Scholar
  151. 2.
    M. J. Klein and R. A. Huggins, Trans. AIME 224, 903 (1962).Google Scholar
  152. 3.
    M. Davis, K. R. Montgomery and J. Standring, J. Inst. Metals 89, 172 (1960–61).Google Scholar
  153. 4.
    J. Debuigne and P. Lehr, Mém. Scient. Revue Métall. 60, 911 (1963).Google Scholar
  154. 5.
    G. Beranger and P. Lacombe, J. Nucl. Mater. 16, 190 (1965).Google Scholar
  155. 2.
    G. Sainfort, R. Jacquesson and P. Laurent, Colloque sur la Diffusion a L’Etat solide (editor: G. Chaudron), North Holland Publ. Co., Amsterdam (1959), p. 79.Google Scholar
  156. 3.
    E. Smith, Direct Observation of Imperfections in Crystals (editors: J. B. Newkirk and J. H. Wernick), John Wiley, New York (1961), p. 203.Google Scholar

Copyright information

© N. V. Philips’ Gloeilampenfabrieken, Eindhoven 1971

Authors and Affiliations

  • J. D. Fast
    • 1
  1. 1.The Technical University of EindhovenCanada

Personalised recommendations