Skip to main content

Solutions of Gases in Metals

  • Chapter
Interaction of Metals and Gases

Part of the book series: Philips Technical Library ((PTL))

Abstract

The noble gases are for practical purposes insoluble in metals(1). On the other hand, hydrogen, nitrogen and oxygen are soluble in many metals. As long as the concentration of the dissolved gas is low, the solubility at constant temperature is proportional to the square root of the gas pressure. From this it follows that the gas is present in the metal, not in the form of molecules but as atoms(2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. A. van Wberingen and N. Warmoltz, Physical Grav. 22, 849 (1956), proved that at high temperature helium diffuses through single-crystal walls of the non-metals germanium and silicon. Their experiments show that helium has a noticeable solubility in these elements which crystallize with the loosely-packed diamond structure.

    Google Scholar 

  2. See J. D. Fast, Interaction of Metals and Gases, Vol. 1, Thermodynamics and Phase Relations, Philips Technical Library, Eindhoven (1965), Chapter 7.

    Google Scholar 

  3. A. Coehn et al, Z. Phys. 83, 291 (1933).

    Google Scholar 

  4. J. Knaak and W. Eichenauer, Z. Naturf 23A, 1783 (1968).

    Google Scholar 

  5. J. Wesolowski, J. Jarmula and B. Rozenfeld, Bull Acad. Poi. Sci. Sér. Sci. chim. 9, 651 (1961).

    Google Scholar 

  6. R. A. Oriani and O. D. Gonzalez, 7. AIME 239, 1041 (1967).

    Google Scholar 

  7. W. Seith and O. Kubaschewski, Z. Elektrochem. 41, 551 (1935).

    Google Scholar 

  8. P, Dayal and L. S. Darken, Trans. AIME 188, 1156 (1950).

    Google Scholar 

  9. J. H. de Boer and J. D. Fast, Reel Trav. chim. Pays-Bas Belg. 59, 161 (1940).

    Google Scholar 

  10. F. Laves, Trans. Am. Soc. Metals 48A, 124 (1956).

    Google Scholar 

  11. L. J. Dijkstra, Philips Res. Rep. 2, 357 (1947).

    Google Scholar 

  12. G. K. Williamson and R. E. Smallman, Acta crystallogr. 6, 361 (1953).

    Google Scholar 

  13. Calculations based on the continuum theory of elasticity lead D. N. Beshers, J. Appl. Phys. 36, 290 (1965) to the conclusion that although this is so for nitrogen and carbon in iron, it does not apply to vanadium where these elements would occupy tetrahedral interstices which, according to Table 1, are larger than those in iron. According to his calculations oxygen and nitrogen in niobium and tantalum would also prefer tetrahedral sites to octahedral sites. It is doubtful whether these conclusions are justified (see Sections 1.5 and 1.6).

    Google Scholar 

  14. K. H. Jack, Proc. R. Soc. A208, 200 (1951).

    Google Scholar 

  15. See also: M. Cohen, Trans. AIME 224, 638 (1962).

    Google Scholar 

  16. C. Zener, Trans. AIME 167, 550 (1946).

    Google Scholar 

  17. J. L. Meijering, Phase Stability in Metals and Alloys (editored by P. S. Rudman, J. Stringer and R. I. Jaffee), McGraw-Hill, New York (1967), p. 359.

    Google Scholar 

  18. P. E. Busby, M. E. Warga and C. Wells, Trans. AIME 197, 1463 (1953).

    Google Scholar 

  19. M. E. Nicholson, Trans. AIME 200, 185 (1954).

    Google Scholar 

  20. C. C. Mcbride, J. W. Spretnak and R. Speiser, Trans. Am. Soc. Metals 46, 499 (1954).

    Google Scholar 

  21. J. L. Snoek, Physica,’s Grav. 9, 862 (1942).

    Google Scholar 

  22. A. H. Cottrell, Prog. Metal Phys. 1, 77 (1949).

    Google Scholar 

  23. J. D. Fast, Revue MetalL Paris 47, 779 (1950).

    Google Scholar 

  24. W. Shockley, J. Appl Phys. 10, 543 (1939).

    Google Scholar 

  25. W. Eichenauer, W. Loser and H. Witte, Z. Metallk. 56, 287 (1965).

    Google Scholar 

  26. W. J. Thomasch, Phys. Rev. 123, 510 (1961).

    Google Scholar 

  27. J. Bergsma and J. A. Goedkoop, Physicals Grav. 26, 744 (1960).

    Google Scholar 

  28. In some liquid metals the solubility of chlorine is very great. As an extreme example it can be mentioned that Cs and CsCl form an uninterrupted series of liquid solutions. See: M. A. Bredig, H. R. Bronstein and W. T. Smith, J. Am. Chem. Soc. 77, 1454 (1955).

    Google Scholar 

  29. J. D. Fast, Interaction of Metals and Gases, Vol. I. Thermodynamics and Phase Relations, Philips Technical Library, Eindhoven (1965) (Table 13, p. 161).

    Google Scholar 

  30. J. L. Meijering, Acta Metall 3, 157 (1955).

    Google Scholar 

  31. W. Eichenauer and G. Müller, Z. Metallk. 53, 321 (1962).

    Google Scholar 

  32. F. Bouillon et al., Acta Metall. 10, 647 (1962).

    Google Scholar 

  33. J. J. Vuillemin, Phys. Rev. 144, 396 (1966).

    Google Scholar 

  34. J. M. Ziman, Electrons in Metals (a short guide to the Fermi surface), Taylor & Francis, London (1964).

    MATH  Google Scholar 

  35. W. A. Harrison and M. B. Webb (editors), The Fermi Surface, Wiley, New York (1960).

    Google Scholar 

  36. J. A. Rayne, Aust. J. Phys. 9, 189 (1956).

    Google Scholar 

  37. K. G. Ramanathan and T. M. Srinivasan, J. Scient. Ind. Res. 16B, 277 (1957).

    Google Scholar 

  38. L. Troost and P. Hautefeuille, Annls. Chim. phys. 2, 279 (1874).

    Google Scholar 

  39. C. Hoitsema, Z. phys. Chem. 17, 1 (1895).

    Google Scholar 

  40. L. W. Mckeehan, Phys. Rev. 21, 334 (1923).

    Google Scholar 

  41. J. O. Linde and G. Borelius, Annln Phys. 84, 747 (1927).

    Google Scholar 

  42. F. Krüger and G. Gehm, Annln Phys. 16, 174 (1933).

    Google Scholar 

  43. E. A. Owen and E. St J. Williams, Proc. phys. Soc. 56, 52 (1944).

    Google Scholar 

  44. A. J. Maeland and T. R. P. Gibb, J. phys. Chem., Ithaca 65, 1270 (1961).

    Google Scholar 

  45. H. Brüning and A. Sieverts, Z. phys. Chem. A163, 409 (1932).

    Google Scholar 

  46. L. J. Gillespie and L. S. Galstaun, J. Am. chem. Soc. 58, 2565 (1936).

    Google Scholar 

  47. P. L. Levine and K. E. Weale, Trans. Faraday Soc. 56, 357 (1960).

    Google Scholar 

  48. E. Wicke and G. H. Nernst, Ber. Bunsenges. 68, 224 (1964).

    Google Scholar 

  49. An extensive survey of the older literature on the Pd-H system can be found in D. P. Smith’s book: Hydrogen in Metals, University Press, Chicago (1948).

    Google Scholar 

  50. An accurate summary of the present state of knowledge on the Pd-H system is provided by F. A. Lewis, The Palladium-Hydrogen System, Academic Press, New York (1967).

    Google Scholar 

  51. P. C. Aben and W. G. Burgers, Trans. Faraday Soc. 58, 1989 (1962).

    Google Scholar 

  52. W. Krause and L. Kahlenberg, Trans, electrochem. Soc. 68, 449 (1935).

    Google Scholar 

  53. D. P. Smith and G. J. Derge, Trans, electrochem. Soc. 66, 253 (1934).

    Google Scholar 

  54. T. J. Tiedema, B. C. de Jong and W. G. Burgers, Proc. K. ned. Akad. Wet. B63, 422 (1960).

    Google Scholar 

  55. A. Küssner and E. Wicke, Z. phys. Chem. 24, 152 (1960).

    Google Scholar 

  56. A. Küssner, Z. Elektrochem. 66, 675 (1962).

    Google Scholar 

  57. J. P. Hoare and S. Schuldiner, J. phys. Chem., Ithaca 61, 399 (1957).

    Google Scholar 

  58. S. Schuldiner, G. W. Castellan and J. P. Hoare, J. chem. Phys. 28, 16, 20 and 22 (1958).

    Google Scholar 

  59. T. B. Flanagan and F. A. Lewis, Trans. Faraday Soc. 55, 1400 and 1409 (1959).

    Google Scholar 

  60. R. J. Fallon and G. W. Castellan, J. phys. Chem., Ithaca 64, 4 (1960).

    Google Scholar 

  61. A. W. Carson, T. B. Flanagan and F. A. Lewis, Trans. Faraday Soc. 56, 363, 371 and 1332 (1960).

    Google Scholar 

  62. T. B. Flanagan, J. phys. Chem., Ithaca 65, 280 (1961).

    Google Scholar 

  63. J. R. Lacher, Proc. R. Soc. A161, 525 (1937).

    Google Scholar 

  64. G. G. Libowitz, J. Appl. Phys. 33, 399 (1962).

    Google Scholar 

  65. H. Brodowsky, Z. phys. Chem. 44, 129 (1965).

    Google Scholar 

  66. J. W. Simons and T. B. Flanagan, Can. J. Chem. 43, 1665 (1965).

    Google Scholar 

  67. S. D. Axelrod and A. C. Makrides, J. phys. Chem., Ithaca 68, 2154 (1964).

    Google Scholar 

  68. A. C. Makrides, J. phyti Chem., Ithaca 68, 2160 (1964).

    Google Scholar 

  69. E. Wigner and H. B. Huntington, J. chem. Phys. 3, 764 (1935).

    Google Scholar 

  70. A. R. Ubbelohde, Proc. R. Soc. A159, 295 and 306 (1937).

    Google Scholar 

  71. J. Friedel, Adv. Phys. 3, 446 (1954).

    Google Scholar 

  72. Y. Ebisuzaki and M. O’keeffe, J. phys. Chem., Ithaca 72, 4695 (1968).

    Google Scholar 

  73. D. M. Nace and J. G. Aston, J. Am. Chem. Soc. 79, 3623 (1957).

    Google Scholar 

  74. J. E. Worsham, M. K. Wilkinson and C. G. Shull, Physics Chem. Solids 3, 303 (1957).

    Google Scholar 

  75. P. S. Perminov, A. A. Orlov and A. N. Frumkin, Dokl. Akad. Nauk S.S.S.R. 84, 749 (1952).

    Google Scholar 

  76. K. Skold and G. Nelin, Physics Chem. Solids 28, 2369 (1967).

    Google Scholar 

  77. A. J. Maeland, Can. J. Phys. 46, 121 (1968).

    Google Scholar 

  78. B. Svensson, Annln Phys. 18, 299 (1933).

    Google Scholar 

  79. A. Sieverts and W. Danz, Z. phys. Chem. B38, 61 (1937).

    Google Scholar 

  80. N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys, Oxford University Press (1936), Chapter 6.

    Google Scholar 

  81. P. Brill and J. Voitländer, Z. Naturf. 24A, 1 (1969).

    Google Scholar 

  82. F. E. Hoare, J. C. Matthews and J. C. Walling, Proc. R. Soc. A216, 502 (1953).

    Google Scholar 

  83. B. Svensson, Annln Phys. 14, 699 (1932).

    Google Scholar 

  84. J. Wucher, Annls Phys. 7, 317 (1952).

    Google Scholar 

  85. E. Vogt, Annln Phys. 14, 1 (1932).

    Google Scholar 

  86. B. R. Coles, J. Inst. Metals 84, 346 (1956).

    Google Scholar 

  87. J. S. Dugdale and A. M. Gulnault, Phil. Mag. 13, 503 (1966).

    Google Scholar 

  88. G. Rosenhall, Annln Phys. 24, 297 (1935).

    Google Scholar 

  89. S. D. Axelrod and A. C. Makrides, J. phys. Chem., Ithaca 68, 2154 (1964).

    Google Scholar 

  90. A. C. Makrides, J. phys. Chem., Ithaca 68, 2160 (1964).

    Google Scholar 

  91. H. Brodowsky and E. Poeschel, Z. phys. Chem. 44, 143 (1965).

    Google Scholar 

  92. Analogous results have been obtained by Allard et al. in determinations of the heats of absorption of hydrogen in a series of palladium-gold alloys. Over the investigated region of gold concentrations (5•7 to 44•7 atom per cent Au) the enthalpy of solution for hydrogen at infinite dilution varies from −25 kJ mole−1 (−6•0 kcal/mole) for 5•7% Au to −39 kJ mole−1 (−9•3 kcal/mole) for 44•7% Au; K. Allard, A. Maeland, J. W. Simons and T. B. Flanagan, J. phys. Chem., Ithaca 72, 136 (1968).

    Google Scholar 

  93. K. M. Myles, Acta Metall. 13, 109 (1965).

    Google Scholar 

  94. K. H. Lieser and H. Witte, Z. Elektrochem. 61, 367 (1957).

    Google Scholar 

  95. G. Rosenhall, Annln Phys. 24, 297 (1935).

    Google Scholar 

  96. A. Sieverts, E. Jurisch and A. Metz, Z. anorg. allg. Chem. 92, 329 (1915).

    Google Scholar 

  97. A. Sieverts and H. Hagen, Z. phys. Chem. A174, 247 (1935).

    Google Scholar 

  98. J. B. Hunter, Platin. Metals Rev. 4, 130 (1960).

    Google Scholar 

  99. A. A. Rodina, M. A. Gurevich and N. I. Doronicheva, Russ. J. Phys. Chem. 41, 1286 (1967).

    Google Scholar 

  100. E. M. Wise, Palladium, Academic Press, New York (1968), Chapter 12.

    Google Scholar 

  101. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York (1958).

    Google Scholar 

  102. E. Raab, J. less-common Metals 1, 3 (1959).

    Google Scholar 

  103. A. Maeland and T. B. Flanagan, J. phys. Chem., Ithaca 69, 3575 (1965).

    Google Scholar 

  104. A. Maeland and T. B. Flanagan, J. phys. Chem., Ithaca 68, 1419 (1964).

    Google Scholar 

  105. N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys, Oxford University Press (1936).

    Google Scholar 

  106. A. Sieverts, E. Jurisch and A. Metz, Z. anorg. allg. Chem. 92, 329 (1915).

    Google Scholar 

  107. A. Maeland and T. B. Flanagan, J. phys. Chem., Ithaca 69, 3575 (1965).

    Google Scholar 

  108. A. W. Carson, T. B. Flanagan and F. A. Lewis, Trans. Faraday Soc. 56, 1332 (1960).

    Google Scholar 

  109. A. Maeland and T. B. Flanagan, J. phys. Chem., Ithaca 68, 1419 (1964).

    Google Scholar 

  110. T. B. Flanagan, J. phys. Chem., Ithaca 67, 203 (1963).

    Google Scholar 

  111. A. Maeland and T. B. Flanagan, J. Phys. Chem., Ithaca 68, 1419 (1964).

    Google Scholar 

  112. I. P. Tverdovskii and A. I. Stetsenko, Dokl. Akad. Nauk SSSR 84, 997 (1952).

    Google Scholar 

  113. I. P. Tverdovskii and Z.H.L. Vert, Dokl. Akad. Nauk SSSR 88, 305 (1953).

    Google Scholar 

  114. R. Burch and F. A. Lewis, Trans. Faraday Soc. 66, 727 (1970).

    Google Scholar 

  115. J. R. Lacher, Proc. R. Soc. A161, 525 (1937).

    Google Scholar 

  116. J. S. Anderson, Proc. R. Soc. A185, 69 (1946).

    Google Scholar 

  117. A. Harasima, T. Tanaka and K. Sakaoku, J. phys. Soc. Japan 3, 208 and 213 (1948).

    Google Scholar 

  118. A. L. G. Rees, Trans. Faraday Soc. 50, 335 (1954).

    Google Scholar 

  119. G. G. Libowitz, J. Appl. Phys. 33, 399 (1962).

    Google Scholar 

  120. A. C. Makrides, J. phys. Chem., Ithaca 68, 2160 (1964).

    Google Scholar 

  121. H. Brodowsky, Z. phys. Chem. 44, 129 (1965).

    Google Scholar 

  122. H. Brodowsky and E. Poeschel, Z. phys. Chem. 44, 143 (1965).

    Google Scholar 

  123. J. W. Simons and T. B. Flanagan, Can. J. Chem. 43, 1665 (1965).

    Google Scholar 

  124. K. Allard, A. Maeland, J. W. Simons and T. B. Flanagan, J. phys. Chem., Ithaca 72, 136 (1968).

    Google Scholar 

  125. Y. Ebisuzaki and M. O’keeffe, J. phys. Chem., Ithaca 72, 4695 (1968).

    Google Scholar 

  126. R. Burch, Trans. Faraday Soc. 66, 736 and 749 (1970).

    Google Scholar 

  127. See, for example, S. A. Ahern, M. J. C. Martin and W. Sucksmith, Proc. R. Soc. A248, 145 (1958).

    Google Scholar 

  128. See, for example, E. W. Pugh and F. M. Ryan, Phys. Rev. 111, 1038 (1958).

    Google Scholar 

  129. P. A. Beck (ed.), Electronic Structure and Alloy Chemistry of the Transition Elements, Interscience, New York (1962).

    Google Scholar 

  130. R. A. Rapp and F. Maak, Acta Metall 10, 63 (1962).

    Google Scholar 

  131. A. Kidron, Phys. Lett. 26A, 593 (1968) and Phys. Rev. Lett. 22, 774 (1969).

    Google Scholar 

  132. B. Baranowski and M. Smialowski, Physics Chem. Solids 12, 206 (1959).

    Google Scholar 

  133. A. Janko, Bull. Acad. Pol. Sci. Ser. Sci. chim. 8, 131 (1960).

    Google Scholar 

  134. T. Boniszewski and G. C. Smith, Physics Chem. Solids 21, 115 (1961).

    Google Scholar 

  135. A. Stroka and B. Baranowski, Bull. Acad. Pol. Sci. Ser. Sci. chim. 10, 147 (1962) and 14, 419 (1966).

    Google Scholar 

  136. E. O. Wollan, J. W. Cable and W. C. Koehler, Physics Chem. Solids 24, 1141 (1963).

    Google Scholar 

  137. B. Baranowski, Bull Acad. Pol Sci. Sér. Sci. chim. 10, 451 (1962).

    Google Scholar 

  138. A. Sieverts, Z. Metallk. 21, 37 (1929).

    Google Scholar 

  139. J. Smittenberg, Recl. Trav. chim. Pays-Bas Belg. 53, 1065 (1934).

    Google Scholar 

  140. M. H. Armbruster, J. Am. chem. Soc. 65, 1043 (1943).

    Google Scholar 

  141. B. Baranowski and Z. Szklarska-Smialowska, Electrochim. Acta 9, 1497 (1964).

    Google Scholar 

  142. B. Baranowski and K. Bochenska, Z. phys. Chem. 45, 140 (1965).

    Google Scholar 

  143. B. Baranowski and R. Wisniewski, Bull Acad. Pol. Sci. Sér. Sci. chim. 14, 273 (1966).

    Google Scholar 

  144. C. Wagner, Z. phys. Chem. 193, 386 (1944).

    Google Scholar 

  145. A. R. Ubbelohde, Proc. R. Soc. A159, 295 (1937).

    Google Scholar 

  146. N. A. Scholtus and W. K. Hall, J. chem. Phys. 39, 868 (1963).

    Google Scholar 

  147. D. H. Everett and P. Nordon, Proc. R. Soc. A259, 341 (1960).

    Google Scholar 

  148. J. R. Lacher, Proc. R. Soc. A161, 525 (1937).

    Google Scholar 

  149. H. J. Bauer and E. Schmidbauer, Z. Phys. 164, 367 (1961).

    Google Scholar 

  150. W. Andrä, Phys. stat. sol. 1, K135 (1961).

    Google Scholar 

  151. D. J. van Ooyen, Physics Chem. Solids 23, 1173 (1962).

    Google Scholar 

  152. B. A. Wilcox and G. C. Smith, Acta Metall. 13, 331 (1965).

    Google Scholar 

  153. J. D. Fast, Interaction of Metals and Gases, Vol. I. Thermodynamics and Phase Relations, Philips Technical Library, Eindhoven (1965), Section 7.6.

    Google Scholar 

  154. M. Smialowski, Hydrogen in Steel, Pergamon Press, London (1962), p. 57.

    Google Scholar 

  155. A. Faessler and R. Schmid, Z. Phys. 190, 10 (1966).

    Google Scholar 

  156. G. K. Wertheim and D. N. E. Buchanan, Physics Chem. Solids 28, 225 (1967).

    Google Scholar 

  157. G. Hägg, Z. phys. Chem. B12, 33 (1931).

    Google Scholar 

  158. R. C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press (1939).

    Google Scholar 

  159. T. R. P. Gibb, Prog, inorg. Chem. 3, 315 (1962).

    Google Scholar 

  160. G. G. Libowitz, The Solid-State Chemistry of Binary Metal Hydrides, Benjamin, New York (1965).

    Google Scholar 

  161. The existence range of cubic titanium hydride extends from TiH to TiH2 (idealized formulae). The figures in Table 3 are taken from the book by W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London (1958).

    Google Scholar 

  162. A. R. Ubbelohde, Proc. R. Soc. A159, 295 (1937).

    Google Scholar 

  163. I. Isenberg, Phys. Rev. 79, 736 (1950).

    Google Scholar 

  164. T. R. P. Gibb, J. Macmillan and R. J. Roy, J. phys. Chem., Ithaca 70, 3024 (1966).

    Google Scholar 

  165. R. J. Smith, A. I. Schindler and E. W. Kammer, Phys. Rev. 127, 179 (1962).

    Google Scholar 

  166. C. A. Mackliet and A. I. Schindler, Phys. Rev. 146, 463 (1966).

    Google Scholar 

  167. W. C. Phillips and C. W. Kimball, Phys. Reu. 165, 401 (1968).

    Google Scholar 

  168. D. Zamir, Phys. Rev. 140, A271 (1965).

    Google Scholar 

  169. Y. Ebisuzaki and M. O’keeffe, Prog. Sol. State Chem. 4, 187 (1967).

    Google Scholar 

  170. K. M. Mackay, Hydrogen Compounds of the Metallic Elements, E. & F. N. Spon, London (1966).

    Google Scholar 

  171. M. N. A. Hall, S. L. H. Martin and A. L. G. Rees, Trans. Faraday Soc. 41, 306 (1945) and 50, 343 (1954).

    Google Scholar 

  172. K. P. Singh and J. Gordon Parr, Trans. Faraday Soc. 59, 2248 (1963).

    Google Scholar 

  173. M. T. Hepwörth and R. Schuhmann, Trans. AIME 224, 928 (1962).

    Google Scholar 

  174. R. K. Edwards and P. Levesque, J. Am. Chem. Soc. 77, 1312 (1955).

    Google Scholar 

  175. H. O. Pritchard and H. A. Skinner, Chem. Rev. 55, 745 (1955).

    Google Scholar 

  176. A. L. Allred and E. G. Rochow, J. inorg. nucl. Chem. 5, 264 (1958).

    Google Scholar 

  177. E. J. Little and M. M. Jones, J. chem. Educ. 37, 231 (1960).

    Google Scholar 

  178. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, New York (1945).

    MATH  Google Scholar 

  179. R. T. Bryant, J. less-common Metals 4, 62 (1962).

    Google Scholar 

  180. W. E. Few and G. K. Manning, Trans. AIME 194, 271 (1952).

    Google Scholar 

  181. D. W. Jones, N. Pessall and A. D. Mcquillan, Phil. Mag. 6, 455 (1961).

    Google Scholar 

  182. D. W. Jones and A. D. Mcquillan, Physics Chem. Solids 23, 1441 (1962).

    Google Scholar 

  183. D. W. Jones, Phil. Mag. 9, 709 (1964).

    Google Scholar 

  184. N. V. Grum-Grzhimailo and V. G. Gromova, Zh. neorg. Khim. 2, 2426 (1957).

    Google Scholar 

  185. J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  186. T. H. Geballe, Rev. Mod. Phys. 36, 134 (1964).

    Google Scholar 

  187. R. A. Hein, J. W. Gibson and R. D. Blaugher, Rev. Mod. Phys. 36, 149 (1964).

    Google Scholar 

  188. W. Desorbo, Phys. Rev. 130, 2177 (1963) and 140, A914 (1965).

    Google Scholar 

  189. R. O. Davies (ed.), Proc. 8th Intern. Conf. Low Temp. Phys., Butterworths, London (1963).

    Google Scholar 

  190. K. M. Ralls and J. Wulff, J. less-common Metals 11, 127 (1966).

    Google Scholar 

  191. C. D. Wiseman, J. appl Phys. 37, 3599 (1966).

    Google Scholar 

  192. D. P. Seraphim, D. T. Novick and J. I. Budnick, Acta Metall. 9, 446 (1961).

    Google Scholar 

  193. J. H. de Boer and J. D. Fast, Reel Trav. chim. Pays-Bas Belg. 59, 161 (1940).

    Google Scholar 

  194. F. Claisse and H. P. Koenig, Acta Metall. 4, 650 (1956).

    Google Scholar 

  195. P. S. Rudman, Electrotransport Seminar, 94th Annual AIME Meeting, Chicago, 1965.

    Google Scholar 

  196. T.H. Heumann, The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Vol. 1, Paper 2C, Her Majesty’s Stationery Office, London (1959).

    Google Scholar 

  197. J. D. Verhoeven, Metall. Rev. 8, 311 (1963).

    Google Scholar 

  198. R. A. Oriani and O. D. Gonzalez, Trans. AIME 239, 1041 (1961).

    Google Scholar 

  199. Yu. G. Miller, Soviet Phys. Solid St. 3, 1728 (1962).

    Google Scholar 

  200. Yu. G. Miller and K. P. Gurov, Soviet Phys. Solid St. 3, 2096 (1962).

    Google Scholar 

  201. M. J. Bibby and W. V. Youdelis, Can. J. Phys. 44, 2363 (1966).

    Google Scholar 

  202. M. J. Bibby, L. C. Hutchinson and W. V. Youdelis, Can. J. Phys. 44, 2375 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1971 N. V. Philips’ Gloeilampenfabrieken, Eindhoven

About this chapter

Cite this chapter

Fast, J.D. (1971). Solutions of Gases in Metals. In: Interaction of Metals and Gases. Philips Technical Library. Palgrave, London. https://doi.org/10.1007/978-1-349-00500-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-00500-0_1

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-00502-4

  • Online ISBN: 978-1-349-00500-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics