Skip to main content

Elastic Theory for a Simple Pipe

  • Chapter
Analysis of Surge

Abstract

In the theory in Section 2.2 we assumed that water is completely incompressible and that a pipe may be completely rigid. The pressure changes obtained in this way are reasonably accurate if the change of flow is slow and smooth. If, however, the change of flow is sudden, i.e. if T = 0, where T is the time of the valve movement, then dv/dt would be infinite and the pressure increase or decrease would be infinite. Experiments show that the change of pressure is finite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lupton, H. R.: ‘Surge control in pipelines,’ J. Instn Wat. Engrs, (1965), 19, pp. 81–85.

    Google Scholar 

  2. Joukowski, N.: ‘Waterhammer’ (Translated by Miss O. Simin), Proc. Am. Wat. Wks Ass., (1904), 24, pp. 341–424.

    Google Scholar 

  3. Parmakian, J.: Waterhammer analysis (Dover, 1955).

    Google Scholar 

  4. Allievi, L.: Teorie del colpo d’ariete (Atti Collegio Ing. Ach, 1913). Translation by Haimos, E. E.: The theory of waterhammer (Am. Soc. mech. Engrs, 1929).

    Google Scholar 

  5. Jaeger, C.: ‘Present trends in the design of pressure tunnels and shafts for underground hydro-electric power stations,’ Proc. Instn civ. Engrs, (1955), 4, pp. 116–174.

    Google Scholar 

  6. Swaminathan, K. V.: ‘Velocity of waterhammer waves in embedded steel penstocks,’ Civ. Engng publ. Wks Rev., (1964), 59, pp. 1409–1413.

    Google Scholar 

  7. Swaminathan, K. V.: ‘Waterhammer wave velocities in concrete tunnels,’ Wat. Pwr, (1965), 17, pp. 117–121.

    Google Scholar 

  8. Linton, P., ‘A simple guide to waterhammer and some notes on pressure surges in pump delivery lines,’ Br. Hydromech. Res. Ass., (1961), TN411.

    Google Scholar 

  9. Gibson, A. H.: The mechanical properties of fluids (Blackie, 1923) p. 210.

    Google Scholar 

  10. Goldman, G. O.: Waterhammer: its causes, magnitude, prevention (Columbia Graphs Inc., 1953).

    Google Scholar 

  11. Pearsall, I. S.: ‘The velocity of waterhammer waves,’ Symp. Surges Pipelines, Proc. Instn mech. Engrs, (1966), 180, 3E, pp. 12–20.

    Google Scholar 

  12. Kerr, S. L.: ‘Practical aspects of waterhammer,’ J. Instn Wat. Engrs, (1949), 3, pp. 67–74.

    Google Scholar 

Further Reading

  • Enever, K. J.: ‘An introduction to pressure surges in gas-liquid mixtures,’ Br. Hydromech. Res. Ass., (1967), 9th Members Conf., SP 920.

    Google Scholar 

  • Halliwell, A. R.: ‘Velocity of waterhammer wave in an elastic pipe,’ J. Hydraul. Div., Proc. Am. Soc. civ. Engrs, (1963), 89, pp. 1–21.

    Google Scholar 

  • Kennison, H. F.: ‘Surge-wave velocity—concrete pressure pipe,’ Trans. Am. Soc. mech. Engrs, (1956), 78, pp. 1323–1327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1969 John Pickford

About this chapter

Cite this chapter

Pickford, J. (1969). Elastic Theory for a Simple Pipe. In: Analysis of Surge. Macmillan Civil Engineering Hydraulics. Palgrave, London. https://doi.org/10.1007/978-1-349-00160-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-00160-6_3

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-00162-0

  • Online ISBN: 978-1-349-00160-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics