Fatigue and Incremental Collapse

  • M. B. Bickell
  • C. Ruiz
Chapter

Abstract

Cyclic fatigue is said to cause the failure of a structural member which breaks during a load cycle that it has previously withstood. This type of failure is perhaps the most common in machine elements subjected to cyclic stresses in the elastic range. In the pressure vessel industry, a similar type of elastic strain fatigue occurs when a component suffers rapid vibration, for instance in welded brackets supporting unbalanced rotating machinery, in pipes under pulsating flow, etc. The amplitude of the oscillations, compared to the steady value of the load, is usually small and fracture occurs after a large number of cycles, say 105–107 cycles. Design to prevent this type of fatigue failure follows generally accepted rules and will not be discussed here in detail, but the reader is referred to standard books on the subject (Refs. 1, 2, 3).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peterson R. E. Stress Concentration Design Factors (Wiley, 1953).Google Scholar
  2. 2.
    Heywood R. B. Designing by Photoelasticity (Chapman & Hall, 1952).Google Scholar
  3. 3.
    Forrest P. G. Fatigue of Metals (Pergamon, 1962).Google Scholar
  4. 4.
    Martin D. E. ‘An Energy Criterion for Low-Cycle Fatigue’, A.S.M.E. Paper No. 61-Met-4.Google Scholar
  5. 5.
    Miller D. R. J. Basic Eng. 81 (1959) 190.Google Scholar
  6. 6.
    Edmunds H. G. & Beer F. J. J. Mech. Eng. Sci. 3 (1961) 187.CrossRefGoogle Scholar
  7. 7.
    Tavernelli J. F. & Coffin L. F. ‘Experimental Support for Generalized Equation Predicting Low-Cycle Fatigue’, A.S.M.E. Paper No. 61-WA199.Google Scholar
  8. 8.
    Sessler J. G. & Weiss V. ‘Low-Cycle Fatigue Damage of Pressure Vessel Materials’, A.S.M.E. Paper No. 62-WA-233.Google Scholar
  9. 9.
    Sachs G., Gerberich, W. W., Weiss V. & Latorre J. V. Proc. A.S.T.M. 60 (1960) 512.Google Scholar
  10. 10.
    Miner M. A. Trans. A.S.M.E. 67 (1945) 159.Google Scholar
  11. 11.
    Langer B. F. Bettis Technical Review WAPD-BT-18, April 1960.Google Scholar
  12. 12.
    Yao J. T. P. & Munse W. H. Welding J. (Res. Supp.), 41 (1962) 182s.Google Scholar
  13. 13.
    Coffin L. F. Trans. A.S.M.E. 76 (1954) 931.Google Scholar
  14. 14.
    Coffin L. F. Paper in Symposium on Effect of Cyclic Heating and Stressing on Metals at Elevated Temperatures, A.S.T.M. Spec. Pub. No. 165 (1954).Google Scholar
  15. 15.
    Lane P. H. R., B.W.R.A. Rep. FE 16/41/56.Google Scholar
  16. 16.
    Lane P. H. R. & Rose R. T. Paper in Symposium on Pressure Vessel Research Towards Better Design (I. Mech. E., 1962).Google Scholar
  17. 17.
    ROSe R. T. loc. cit. Ref. 16.Google Scholar
  18. 18.
    Markl A. R. C. Paper in Pressure Vessel and Piping Design: Collected Papers (A.S.M.E., 1960).Google Scholar
  19. 19.
    Langer B. F. Welding J. (Res. Supp.) 37 (1959) 411s.Google Scholar
  20. 20.
    Langer B. F. J. Basic Eng. 84 (1962) 389.CrossRefGoogle Scholar

Copyright information

© M. B. Bickell and C. Ruiz 1967

Authors and Affiliations

  • M. B. Bickell
    • 1
  • C. Ruiz
    • 2
  1. 1.Babcock & Wilcox Ltd.UK
  2. 2.University of SheffieldUK

Personalised recommendations