Skip to main content

Part of the book series: Philips Technical Library ((PTL))

  • 39 Accesses

Abstract

Since X-ray fluorescence spectrometry is essentially a method which counts atoms, the question naturally arises as to what is the minimum number of atoms which are required in order to give a measurable signal above background. Analyses based on the measurement of a small number of atoms fit conveniently into two categories, the first where the number of analysed atoms is small in comparison with the total number of atoms making up the sample i.e. in the analysis of low concentrations and second, where the number of atoms is small because the total sample weight is small i.e. in the analysis of limited quantites of material. These two cases must be considered separately since, as will be seen later, they have little in common.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. garton, f. w. g., United Kingdom Atomic Energy Authority report A.E.R.E. R-4483.

    Google Scholar 

  2. kaiser, h. and specker, h., 1956, Z. analyt. Chem., 149, 46.

    Article  Google Scholar 

  3. kaiser, h., 1966, Z. analyt. Chem., 216, 80.

    Article  Google Scholar 

  4. zemany, p. d., pfeiffer, h. g. and liebhafsky, h. a., 1959, Analyt. Chem., 31, 1176.

    Article  Google Scholar 

  5. champion, k. p. and whittem, r. n., 1963, Nature, 199, 1082.

    Article  Google Scholar 

  6. ladell, j. and parrish. w., 1959. Philips Research Reports, 14, 401.

    Google Scholar 

  7. champion, k. p. and whittem, r. n., Report AAEC/TM289, Sydney, April 1965.

    Google Scholar 

  8. salmon, Advances in X-ray Analysis, Plenum, New York, 1963, 6, 301.

    Book  Google Scholar 

  9. jenkins, r., Proceedings of Exeter Conference on Limitations of Detection in Spectro-chemical Analysis, Hilger and Watts, London, 1964.

    Google Scholar 

  10. müller, r., 1964, Spectrochim. Acta, 20, 143–151.

    Article  Google Scholar 

  11. luke, c. l., 1964, Analyt. Chem., 36, 318.

    Article  Google Scholar 

  12. birks, Electron Probe Micro-analysis, Interscience, New York, 1963.

    Google Scholar 

  13. stone, r. r. and potts, k. t., 1963, Norelco Reporter, 10, 94.

    Google Scholar 

  14. schreiber, t. p., ottolini, a. c. and johnson, j. l., 1963, Appl. Spectr., 17, 17.

    Article  Google Scholar 

  15. salmon, Advances in X-ray Analysis, Plenum, New York, 1962, 5, 389.

    Book  Google Scholar 

  16. rhodin, t. n., 1955, Analyt. Chem., 27, 1857.

    Article  Google Scholar 

  17. addink, n. w. h., 1959, Rev. Universelle des Mines, 15, 530.

    Google Scholar 

  18. norrish, k. and sweatman, t. r., 1962, Divisional Report 11/61, C.S.I.R.O. Division of Soils, Adelaide.

    Google Scholar 

  19. pfeiffer, h. g. and zemany, p. d., 1954, Nature, 174, 397.

    Article  Google Scholar 

  20. gunn, e. l., 1961, Analyt. Chem., 33, 921.

    Article  Google Scholar 

  21. johnson, j. l. and nagel, b. e., 1963, Microchemica Acta, 3, 525.

    Article  Google Scholar 

  22. campbell, w. j. and thatcher, j. w., 1962, U.S. Bur. Mines Rept. Invest 5966.

    Google Scholar 

  23. macdonald, g. l., Proceedings of 4th M.E.L. Conference on X-ray Analysis, (Sheffield, 1964) Philips, Eindhoven.

    Google Scholar 

Download references

Authors

Copyright information

© 1970 N.V. Philips’ Gloeilampenfabrieken

About this chapter

Cite this chapter

Jenkins, R., De Vries, J.L. (1970). Trace Analysis. In: Practical X-Ray Spectrometry. Philips Technical Library. Palgrave, London. https://doi.org/10.1007/978-1-349-00055-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-00055-5_9

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-00057-9

  • Online ISBN: 978-1-349-00055-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics