Skip to main content

Part of the book series: Philips Technical Library ((PTL))

  • 39 Accesses

Abstract

The basis of quantitative X-ray fluorescence spectrometry is to follow the identification of a certain element in a mixture of elements (the matrix) with a measurement of the intensity of one of its characteristic lines, then to use this intensity to estimate the concentration of that element. By use of a range of standard materials a calibration curve can be constructed in which the peak response of a suitable characteristic line is correlated with the concentration of the element. Fig. 6.1 illustrates a typical case where the peak counting rates (R b ) from a range of elements (1–5) are plotted against the concentration of a certain element i. By fitting the calibration curve parameters into the equation for a straight line

$$\begin{array}{*{20}{c}} y \hfill & {=mx+v} \hfill \\ {\left( {{{R}_{p}}} \right)i} \hfill & {={{m}_{i}}\left( {\%i} \right)+\left( {{{R}_{b}}} \right)i} \hfill \\ {\%i} \hfill & {=\frac{{\left( {{{R}_{p}}} \right)i-\left( {{{R}_{b}}} \right)i}}{{{{m}_{i}}}}} \hfill \\ \end{array}$$
((6.1))

it will be seen that the slope of the curve “m” is equal to counts per second per percent and this can be used as a calibration factor for the element in that specific matrix. Once m has been established from standards the net peak minus background response can be divided by m to give the concentration of the element in an unknown but similar matrix. If such a curve were constructed in practice, by an experienced operator using a series of completely homogeneous standards it would be found that, on repeating each measurement a number of times, a certain degree of spread in the count data would occur. This spread is due to certain random errors associated with each reading and would define the precision of the measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. pantony, d. a., 1961, Royal Institute of Chemistry Lecture Series, No. 2.

    Google Scholar 

  2. birks, X-Ray Spectrochemical Analysis, New York, Interscience, 1959.

    Google Scholar 

  3. birks, l. s. and harris, d. l., 1962, Analyt. Chem., 34, 943.

    Article  Google Scholar 

  4. mitchell, Encyclopedia of Spectroscopy, Reinhold, New York, 1960, 0. 736.

    Google Scholar 

  5. mitchell, b. j., 1961, Analyt. Chem., 33, 917.

    Article  Google Scholar 

  6. glocker, r. and scrieber, h., 1928, Ann. Physik., 85, 1089.

    Article  Google Scholar 

  7. leibhafsky, h. a., 1954, Analyt. Chem_ 26, 26.

    Article  Google Scholar 

  8. adler, i. and axelrod, j. m., 1955, Spectrochim. Acta, 7, 91.

    Article  Google Scholar 

  9. claisse, f., 1957, Norelco Reporter, 3, 3.

    Google Scholar 

  10. claisse, f. and samson, c., 1962, Report S67, Province de Quebec, Service des Laboratoires.

    Google Scholar 

  11. blanquet, p., L’analyse par spectrographie et diffraction de rayons X, (Madrid, 1962), Philips, Eindhoven, 85.

    Google Scholar 

  12. poole, a. b., 1966, Private communication.

    Google Scholar 

  13. gunn, Advances in X-ray analysis, Plenum, New York, 1960, 4, 382.

    Google Scholar 

  14. glotova, a. n., loev, n. f. and guinicheva, t. i., 1964, Ind. Lab., 30, 863.

    Google Scholar 

  15. de vries, j. l., Proceedings of XII International Spectroscopy Colloquium, Hilger & Watts, London, 1965.

    Google Scholar 

  16. hagstrom, s., nordling, c. and siegbahn, k., 1964, Z. Physik, 178, 439.

    Article  Google Scholar 

  17. nordling, c., hagstrom, s. and siegbahn, k., 1964, Z. Physik, 170, 433.

    Article  Google Scholar 

  18. fripiat, j. u., leonard, m. and de kimpe, c., Analyse par les rayonnements X, (Bruxelles, 1964) Philips, Eindhoven.

    Google Scholar 

  19. leonard, a., suzuki, sho, fripiat, j. j. and de kimpe, c., 1964, J. Chem. Phys., 68, 2608.

    Article  Google Scholar 

  20. baun, w. l., and fischer, d. w., 1964, Nature, 204, 642.

    Article  Google Scholar 

  21. baun, w. l., fischer, d. w., 1965, Analyt. Chem., 37, 902.

    Article  Google Scholar 

  22. fischer, d. w. and baun, w. l., 1964, A.F. Materials Laboratory Report, No. RDT-TDR-63-4232.

    Google Scholar 

  23. fischer, p. w., and baun, w. l., 1965, 7. Chem. Phys., 43, 2075.

    Google Scholar 

  24. white, e, w., mckinstry, h. a. and bates, t. f., Advances in X-ray analysis, Plenum, New York, 1958, 2, 239.

    Google Scholar 

  25. zemany, p. d., 1960, Analyt. Chem., 32, 595.

    Article  Google Scholar 

  26. flugge, Encyclopedia of Physics, Springer, Berlin, 1957, Vol. 30, p. 156.

    Google Scholar 

  27. haglund, p., 1941, Arkiv. Mat. Astrom. Fysik. Ser. A28, No. 8.

    Google Scholar 

  28. van nordstrand, r. a., 1960, Advances in Catalysis, 12, 149.

    Google Scholar 

  29. levy, r. m., 1965, J. Chem. Phys., 43, 1946.

    Google Scholar 

Download references

Authors

Copyright information

© 1970 N.V. Philips’ Gloeilampenfabrieken

About this chapter

Cite this chapter

Jenkins, R., De Vries, J.L. (1970). Matrix Effects. In: Practical X-Ray Spectrometry. Philips Technical Library. Palgrave, London. https://doi.org/10.1007/978-1-349-00055-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-00055-5_6

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-00057-9

  • Online ISBN: 978-1-349-00055-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics