Advertisement

The eternal molecule

  • Carina Dennis
  • Philip Campbell
  • J. D. Watson
  • F. H. C. Crick
  • M. H. F. Wilkins
  • A. R. Stokes
  • H. R. Wilson
  • Rosalind E. Franklin
  • R. G. Gosling
  • Robert Olby
  • Maclyn McCarty
  • Brenda Maddox
  • Svante Pääbo
  • Aravinda Chakravarti
  • Peter Little
  • John I. Bell
  • Martin Kemp
  • Philip Ball
  • Carlos Bustamante
  • Zev Bryant
  • Steven B. Smith
  • Nadrian C. Seeman
  • Bruce Alberts
  • Errol C. Friedberg
  • Gustav J. V. Nossal
  • Leroy Hood
  • David Galas
  • Gary Felsenfeld
  • Mark Groudine

Abstract

Few molecules captivate like DNA. It enthrals scientists, inspires artists, and challenges society. It is, in every sense, a modern icon. A defining moment for DNA research was the discovery of its structure half a century ago. On 25 April 1953, in an article in Nature, James Watson and Francis Crick described the entwined embrace of two strands of deoxyribonucleic acid. In doing so, they provided the foundation for understanding molecular damage and repair, replication and inheritance of genetic material, and the diversity and evolution of species.

Keywords

Nucleotide Excision Repair Double Helix Replication Fork Deoxyribose Nucleic Acid Thymine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Young, F. B., Gerrard, H., and Jevons, W., Phil. Mag., 40, 149 (1920).Google Scholar
  2. 2.
    Longuet-Higgins, M. S., Mon. Not. Roy. Astro. Soc, Geophys. Supp., 5, 285 (1949).Google Scholar
  3. 4.
    Ekman, Y. W., Arkiv. Mat. Astron. Fysik. (Stockholm), 2 (11) (1905).Google Scholar
  4. 1.
    Pauling, L., and Corey, R. B., Nature. 171, 346 (1953) ; Proc. U.S. Nat. Acad. Sci., 39, 84 (1953).Google Scholar
  5. 2.
    Furberg, S., Acta Chem. Scand., 6, 634 (1952).Google Scholar
  6. 3.
    Chargaff, E., for references see Zamenhof, S., Brawerman, G. and Chargaff, E., Biochim. et Biophys. Acta, 9, 402 (1952).Google Scholar
  7. 4.
    Wyatt, G. R., J. Gen. Physiol, 36, 201 (1952).Google Scholar
  8. 6.
    Wilkins, M. H. F., and Randall, J. T., Biochim. et Biophys. Acta, 10, 192 (1953).Google Scholar
  9. 2.
    Riley, D. P., and Oster, G., Biochim. et Biophys. Acta, 7, 526 (1951).Google Scholar
  10. 3.
    Wilkins, M. H. F., Gosling, R. G., and Seeds, W. E., Nature, 167, 759 (1951).Google Scholar
  11. 5.
    Cochran, W., Crick, F. H. C, and Vand, V., Acta Cryst., 5, 581 (1952).Google Scholar
  12. 6.
    Wilkins, M. H. F., and Randall, J. T., Biochim. et Biophys. Acta, 10, 192 (1953).Google Scholar
  13. 2.
    Cochran, W., Crick, F. H. C, and Vand, V., Acta CrysL, 5, 501 (1952).Google Scholar
  14. 3.
    Pauling, L., Corey, R. B., and Bransom, H. R., Proc. U.S. Nat. Acad. Sci., 37, 205 (1951).Google Scholar
  15. 4.
    Pauling, L., and Corey, R. B., Proc. U.S. Nat. Acad. Sci., 39, 84 (1953).Google Scholar
  16. 8.
    Drushel, W. A., and Felty, A. R., Chem. Zerit., 89, 1016 (1918).Google Scholar
  17. 1.
    Sinsheimer, R. L. First steps toward a genetic chemistry. Science 125, 1123–1128 (1957).CrossRefGoogle Scholar
  18. 2.
    Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).CrossRefGoogle Scholar
  19. 3.
    Wilkins, M. H. F., Stokes, A. R. & Wilson, H. R. Molecular structure of deoxypentose nucleic acids. Nature 171, 738–740 (1953).CrossRefGoogle Scholar
  20. 4.
    Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171,740–741 (1953).CrossRefGoogle Scholar
  21. 5.
    Watson, J. D. & Crick, F. H. C. Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 (1953).CrossRefGoogle Scholar
  22. 6.
    Franklin, R. E. & Gosling, R. G. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 172, 156–157 (1953).CrossRefGoogle Scholar
  23. 7.
    Jacobson, B. Hydration structure of deoxyribonucleic acid and its physico-chemical properties. Nature 172, 666–667 (1953).CrossRefGoogle Scholar
  24. 8.
    Wilkins, M. H. F., Seeds, W E., Stokes, A. R. & Wilson, H. R. Helical structure of crystalline deoxypentose nucleic acid. Nature 172, 759–762 (1953).CrossRefGoogle Scholar
  25. 10.
    Avery, O. T., MacLeod, C. M. & McCarty, M. Studies of the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J. Exp. Med. 79, 137–158 (1944).CrossRefGoogle Scholar
  26. 11.
    Hershey, A. D. & Chase, M. Independent functions of viral proteins and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36, 39–56 (1952).CrossRefGoogle Scholar
  27. 12.
    Watson, J. D. & Crick, F. H. C. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18, 123–131 (1953).CrossRefGoogle Scholar
  28. 13.
    Meselson, M. & Stahl, F. W. The replication of DNA in Escherichia coli. Proc. Natl Acad. Sci. USA 44, 671–682 (1958).CrossRefGoogle Scholar
  29. 14.
    Lehman, I. R., Bessmanm, M. J., Simms, E. S. & Kornberg, A. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 233, 163–170 (1958).Google Scholar
  30. 15.
    Kornberg, A. Biological synthesis of deoxyribonucleic acid: an isolated enzyme catalyzes synthesis of this nucleic acid in response to directions from preexisting DNA. Science 131, 1503–1508 (1960).CrossRefGoogle Scholar
  31. 16.
    Crick, F. H. C. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958).Google Scholar
  32. 17.
    Nirenberg, M. W. & Matthaei, J. H. The dependence of cell-free protein synthesis in E. Coli upon naturally occurring or synthetic polynucleotides. Proc. Natl Acad. Sci. USA 47, 1558–1602 (1961).CrossRefGoogle Scholar
  33. 18.
    Crick, F. H. C, Barnett, L., Brenner, S. & Watts-Tobin, R. J. General nature of the genetic code for proteins. Nature 192, 1227–1232 (1961).CrossRefGoogle Scholar
  34. 19.
    Crick, F. H. C. & Watson, J. D. The complementary structure of deoxyribonucleic acid. Proc. R. Soc. Lond. A 223, 80–96 (1954).CrossRefGoogle Scholar
  35. 20.
    Campbell, P. N. & Work, T. S. Biosynthesis of proteins. Nature 171, 997–1001 (1953).CrossRefGoogle Scholar
  36. 21.
    Dounce, A. Duplicating mechanisms for peptide chain and nucleic acid synthesis. Enzymologia 15, 251–258 (1952).Google Scholar
  37. 22.
    Fruton, J. S. General Biochemistry 2nd edn (Wiley, New York 1958).Google Scholar
  38. 23.
    Kornberg, A. For the Love of Enzymes. The Odyssey of a Biochemist (Harvard Univ. Press, Cambridge, MA, 1989).Google Scholar
  39. 24.
    Kornberg, A. in A Symposium on the Chemical Basis of Heredity (eds McElroy, W D. & Glass, B.) 605 (Johns Hopkins Press, Baltimore, 1957).Google Scholar
  40. 25.
    Watson, J. D. The Double Helix: A Personal Account of the Discovery of the Structure of DNA (Atheneum, New York, 1968). [Norton Critical Edition (ed. Stent, G. S.) published by Norton, New York & London, 1980.]Google Scholar
  41. 26.
    Maddox, B. Rosalind Franklin. The Dark Lady of DNA (Harper Collins, London 2002).Google Scholar
  42. 1.
    Avery, O. T., MacLeod, C. M. & McCarty, M. Studies of the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J. Exp. Med. 79, 137–158 (1944).CrossRefGoogle Scholar
  43. 2.
    McCarty, M. Purification and properties of desoxyribonuclease isolated from beef pancreas. J. Gen. Physiol. 29, 123–139 (1946).CrossRefGoogle Scholar
  44. 3.
    McCarty, M. & Avery, O. T. Studies of the chemical nature of the substance inducing transformation of pneumococcal types II. Effect of desoxyribonuclease on the biological activity of the transforming substance. J. Exp. Med. 83, 89–96 (1946).CrossRefGoogle Scholar
  45. 1.
    Watson, J. The Double Helix: A Personal Account of the Discovery of the Structure of DNA (Atheneum, New York, 1968).Google Scholar
  46. 2.
    Sayre, A. Rosalind Franklin and DNA (W. W. Norton & Co., New York, 1975).Google Scholar
  47. 3.
    Klug, A. Rosalind Franklin and the discovery of the structure of DNA. Nature 219, 808–810, 843–844 (1968).CrossRefGoogle Scholar
  48. 4.
    Klug, A. Rosalind Franklin and the double helix. Nature 248, 787–788 (1974).CrossRefGoogle Scholar
  49. 5.
    Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).CrossRefGoogle Scholar
  50. 6.
    Franklin, R. E. & Gosling, R. G. The structure of sodium thymonucleate fibres: I. The influence of water content. II. The cylindrically symmetrical Patterson function. Acta Crystallogr. 6, 673–677, 678–685 (1953).CrossRefGoogle Scholar
  51. 1.
    Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).CrossRefGoogle Scholar
  52. 2.
    Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).Google Scholar
  53. 3.
    Saiki, R. K. et al. Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).CrossRefGoogle Scholar
  54. 4.
    Miyamoto, M. M., Slightom, J. L. & Goodman, M. Phylogenetic relations of humans and African apes from DNA sequences in theΨη-globin region. Science 238, 369–373 (1987).CrossRefGoogle Scholar
  55. 5.
    Mayr, E. Animal Species and Evolution (Harvard Univ. Press, Cambridge, MA, 1963).CrossRefGoogle Scholar
  56. 6.
    Wilson, A. C. & Sarich, V. M. A molecular time scale for human evolution. Proc. Natl Acad. Sci. USA 63, 1088–1093 (1969).CrossRefGoogle Scholar
  57. 7.
    Chen, F. C, Vallender, E. J., Wang, H., Tzeng, C. S. & Li, W. H. Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences. J. Hexed. 92, 481–489 (2001).Google Scholar
  58. 8.
    Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).Google Scholar
  59. 9.
    Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. & Lander, E. S. High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232 (2001).CrossRefGoogle Scholar
  60. 10.
    Jeffreys, A. J., Kauppi, L. & Neumann, R. Intensely punctated meiotic recombination in the class II region of the major histocompatibility complex. Nature Genet. 29, 217–222 (2001).CrossRefGoogle Scholar
  61. 11.
    Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).CrossRefGoogle Scholar
  62. 12.
    Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).CrossRefGoogle Scholar
  63. 13.
    Yu, N. et al. Larger genetic differences within Africans than between Africans and Eurasians. Genetics 161, 269–274 (2002).Google Scholar
  64. 14.
    Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).CrossRefGoogle Scholar
  65. 15.
    Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507 (1991).CrossRefGoogle Scholar
  66. 16.
    Ingman, M., Kaessmann, H., Pääbo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000).CrossRefGoogle Scholar
  67. 17.
    Underhill, P. A. et al. Y chromosome sequence variation and the history of human populations. Nature Genet. 26, 358–361 (2000).CrossRefGoogle Scholar
  68. 18.
    Stoneking, M. et al. Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. Genome Res. 7, 1061–1071 (1997).CrossRefGoogle Scholar
  69. 19.
    Tishkoff, S. A. et al. Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science 271, 1380–1387 (1996).CrossRefGoogle Scholar
  70. 20.
    Takahata, N., Lee, S. H. & Satta, Y. Testing multiregionality of modern human origins. Mol. Biol. Evol. 18, 172–183 (2001).CrossRefGoogle Scholar
  71. 21.
    Harpending, H. & Rogers, A. Genetic perspectives on human origins and differentiation. Annu. Rev. Genomics Hum. Genet. 1, 361–385 (2000).CrossRefGoogle Scholar
  72. 22.
    Krings, M. et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30 (1997).CrossRefGoogle Scholar
  73. 23.
    Ovchinnikov, I. V. et al. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404, 490–493 (2000).CrossRefGoogle Scholar
  74. 24.
    Krings, M., Geisert, H., Schmitz, R. W., Krainitzki, H. & Pääbo, S. DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proc. Natl Acad. Sci. USA 96, 5581–5585 (1999).CrossRefGoogle Scholar
  75. 25.
    Krings, M. et al. A view of Neandertal genetic diversity. Nature Genet. 26, 144–146 (2000).CrossRefGoogle Scholar
  76. 26.
    Nordborg, M. On the probability of Neanderthal ancestry. Am. J. Hum. Genet. 63, 1237–1240 (1998).CrossRefGoogle Scholar
  77. 27.
    Pääbo, S. Human evolution. Trends Cell Biol. 9, M13–M16 (1999).CrossRefGoogle Scholar
  78. 28.
    Stringer, C. Modern human origins: progress and prospects. Phil. Trans. R. Soc. Lond. B 357, 563–579 (2002).CrossRefGoogle Scholar
  79. 29.
    Deinard, A. & Kidd, K. Evolution of a HOXB6 intergenic region within the great apes and humans. J. Hum. Evol. 36, 687–703 (1999).CrossRefGoogle Scholar
  80. 30.
    Kaessmann, H., Wiebe, V., Weiss, G. & Pääbo, S. Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nature Genet. 27, 155–156 (2001).CrossRefGoogle Scholar
  81. 31.
    Lewontin, R. C. The problem of genetic diversity. Evol. Biol. 6, 381–398 (1972).CrossRefGoogle Scholar
  82. 32.
    Kaessmann, H., Heissig, F., von Haesler, A. & Pääbo, S. DNA sequence variation in a non-coding region of low recombination on the human X chromosome. Nature Genet. 22, 78–81 (1999).CrossRefGoogle Scholar
  83. 33.
    Harris, E. E. & Hey, J. X chromosome evidence for ancient human histories. Proc. Natl Acad. Sci. USA 96, 3320–3324 (1999).CrossRefGoogle Scholar
  84. 34.
    Yua, N. & Li, W.-H. No fixed nucleotide difference between Africans and non-Africans at the pyruvate dehydrogenase El a-subunit locus. Genetics 155, 1481–1483 (2000).Google Scholar
  85. 35.
    Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, Princeton, NJ, 1993).Google Scholar
  86. 36.
    Risch, N., Burchard, E., Ziv, E. & Tang, H. Categorization of humans in biological research: genes, race and disease. Genome Biol. 3, 2007.1–2007.12 (2002).CrossRefGoogle Scholar
  87. 37.
    Tomasello, M. & Call, J. Primate Cognition (Oxford Univ. Press, New York, 1997).Google Scholar
  88. 38.
    Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).CrossRefGoogle Scholar
  89. 39.
    Eichler, E. E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669 (2001).CrossRefGoogle Scholar
  90. 40.
    Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002).CrossRefGoogle Scholar
  91. 41.
    Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).CrossRefGoogle Scholar
  92. 42.
    Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 71, 136–142 (2002).CrossRefGoogle Scholar
  93. 2.
    Arcos-Burgos, M. & Muenke, M. Genetics of population isolates. Clin. Genet. 61, 233–247 (2002).CrossRefGoogle Scholar
  94. 3.
    Aidoo, M. et al. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359, 1311–1312 (2002).CrossRefGoogle Scholar
  95. 4.
    Tishkoff, S. A. & Williams, S. M. Genetic analysis of African populations: human evolution and complex disease. Nature Rev. Genet. 3, 611–621 (2002).Google Scholar
  96. 5.
    Chakravarti, A. Single nucleotide polymorphisms:…to a future of genetic medicine. Nature 409, 822–823 (2001).CrossRefGoogle Scholar
  97. 6.
    Carrasquillo, M. M. et al. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nature Genet. 32, 237–244 (2002).CrossRefGoogle Scholar
  98. 7.
    Cox, N. J. Challenges in identifying genetic variation affecting susceptibility to type 2 diabetes: examples from studies of the calpain-10 gene. Hum. Mol. Genet. 10, 2301–2305 (2001).CrossRefGoogle Scholar
  99. 8.
    Sullivan, P. F. et al. Analysis of epistasis in linked regions in the Irish study of high-density schizophrenia families. Am. J. Med. Genet. 105, 266–270 (2001).CrossRefGoogle Scholar
  100. 9.
    Boyle, J. P. et al. Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the United States. Diabetes Care 24, 1936–1940 (2001).CrossRefGoogle Scholar
  101. 10.
    Münger, K. Disruption of oncogene/tumor suppressor networks during human carcinogenesis. Cancer Invest. 20, 71–81 (2002).CrossRefGoogle Scholar
  102. 11.
    Panda, S., Hogenesch, J. B. & Kay, S. A. Circadian rhythms from flies to human. Nature 417, 329–335 (2002).CrossRefGoogle Scholar
  103. 12.
    MacGregor, A. J. et al. Twins: novel uses to study complex traits and genetic diseases. Trends Genet. 16, 131–134 (2000).CrossRefGoogle Scholar
  104. 13.
    Wertz, D. C. Ethics watch. Nature Rev. Genet. 3, 496 (2002).Google Scholar
  105. 14.
    Evans, W. E. & Johnson, J. A. Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu. Rev. Genomics Hum. Genet. 2, 9–39 (2001).CrossRefGoogle Scholar
  106. 15.
    Lown, K. S. et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J. Clin. Invest. 99, 2545–2553 (1997).CrossRefGoogle Scholar
  107. 16.
    Wright, A. E, Carothers, A. D. & Campbell, H. Gene-environment interactions—the BioBank UK study. Pharmacogenomics J. 2, 75–82 (2002).CrossRefGoogle Scholar
  108. 17.
    Stucker, I. et al. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis 23, 1475–1481 (2002).CrossRefGoogle Scholar
  109. 1.
    Watson, J. D. & Crick, F. C. H. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).CrossRefGoogle Scholar
  110. 2.
    Abraham, E. P. et al. Further observations on penicillin. Lancet ii, 177–188 (1941).CrossRefGoogle Scholar
  111. 3.
    Doll, R. & Hill, A. B. Smoking and carcinoma of the lung. Br. Med. J. 2, 739–748 (1950).CrossRefGoogle Scholar
  112. 4.
    Fisher, R. A. Cancer and smoking. Nature 182, 596 (1958).CrossRefGoogle Scholar
  113. 5.
    Holtzman, N. A. & Marteau, T. M. Will genetics revolutionise medicine? N. Engl. J. Med. 343, 141–144 (2000).CrossRefGoogle Scholar
  114. 6.
    Bell, J. I. The new genetics in clinical practice. Br. Med. J. 316, 618–620 (1998).CrossRefGoogle Scholar
  115. 7.
    Osier, W. The Principles and Practice of Medicine (Appleton, New York, 1892).Google Scholar
  116. 8.
    Lewis, T. Reflections upon medical education. Lancet i, 619–621 (1944).CrossRefGoogle Scholar
  117. 9.
    Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet. 2, 91–99 (2001).CrossRefGoogle Scholar
  118. 10.
    Van Eerdewegh, R et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002).CrossRefGoogle Scholar
  119. 11.
    Cookson, W. O. C. M., Sharp, P. A., Faux, J. A. & Hopkin, J. M. Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome llq. Lancet 1, 1292–1295 (1989).CrossRefGoogle Scholar
  120. 12.
    Shirakawa, I. et al. Atopy and asthma: genetic variants of IL-4 and IL-13 signalling. Immunol. Today 21, 61–64 (2000).CrossRefGoogle Scholar
  121. 13.
    Pharoah, P. D. P. et al. Polygenic susceptibility to breast cancer and implications for prevention. Nature Genet. 31, 33–36 (2002).CrossRefGoogle Scholar
  122. 14.
    Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297, 1333–1336 (2002).CrossRefGoogle Scholar
  123. 15.
    Weber, W. W. Pharmacogenetics (Oxford Univ. Press, New York, 1997).Google Scholar
  124. 1.
    Coen, E. The Art of Genes. How Organisms Grow Themselves (Oxford Univ. Press, Oxford, 1999).Google Scholar
  125. 2.
    Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).CrossRefGoogle Scholar
  126. 3.
    Watson, J. D. Molecular Biology of the Gene (W. A. Benjamin, Inc., New York, 1965).Google Scholar
  127. 4.
    Descharnes, H. & Neret, G. Salvador Dali 1904–1989 (Taschen, New York, 1998).Google Scholar
  128. 5.
    Nelkin, D. & Anker, S. The influence of genetics on contemporary art. Nature Rev. Genet. 3, 967–971 (2002).CrossRefGoogle Scholar
  129. 6.
    Kemp, M. Reliquary and replication. A Genomic Portrait: Sir John Sulston by Marc Quinn. Nature 413, 778 (2001).CrossRefGoogle Scholar
  130. 1.
    Poirier, M. G. & Marko, J. F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc. Natl Acad. Sci. USA 99, 15393–15397 (2002).CrossRefGoogle Scholar
  131. 2.
    Van Driel, R. & Otte, A. P. (eds) Nuclear Organization, Chromatin Structure, and Gene Expression (Oxford Univ. Press, 1997).Google Scholar
  132. 3.
    Asturias, F. J., Chung, W.-H., Kornberg, R. D. & Lorch, Y. Structural analysis of the RSC chromatin-remodeling complex. Proc. Natl Acad. Sci. USA 99, 13477–13480 (2002).CrossRefGoogle Scholar
  133. 1.
    Kratky, O. & Porod, G. Röntgenuntersushung gelöster Fagenmoleküle. Rec. Trav. Chim. Pays-Bas 68, 1106–1123 (1949).CrossRefGoogle Scholar
  134. 2.
    Schellman, J. A. Flexibility of DNA. Biopolymers 13, 217–226 (1974).CrossRefGoogle Scholar
  135. 3.
    Goodman, S. D. & Nash, H. D. Functional replacement of a protein-induced bend in a DNA recombination site. Nature 341, 251–254 (1989).CrossRefGoogle Scholar
  136. 4.
    Perez-Martin, J. & Espinosa, M. Protein-induced bending as a transcriptional switch. Science 260, 805–807 (1993).CrossRefGoogle Scholar
  137. 5.
    Parvin, J. D., McCormick, R. J., Sharp, P. A. & Fisher, D. E. Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature 373, 724–727 (1995).CrossRefGoogle Scholar
  138. 6.
    Strauss, J. K. & Maher, L. J. III DNA bending by asymmetric phosphate neutralization. Science 266, 1829–1834 (1994).CrossRefGoogle Scholar
  139. 7.
    Beuche, F. Physical Properties of Polymers (Interscience, New York, 1962).Google Scholar
  140. 8.
    Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).CrossRefGoogle Scholar
  141. 9.
    Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).CrossRefGoogle Scholar
  142. 10.
    Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).CrossRefGoogle Scholar
  143. 11.
    Bustamante, C, Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).CrossRefGoogle Scholar
  144. 12.
    Wuite, G. J., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106 (2000).CrossRefGoogle Scholar
  145. 13.
    Maier, B., Bensimon, D. & Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl Acad. Sci. USA 97, 12002–12007 (2000).CrossRefGoogle Scholar
  146. 14.
    Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).CrossRefGoogle Scholar
  147. 15.
    Strick, T. R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000).CrossRefGoogle Scholar
  148. 16.
    Dekker, N. H. et al. The mechanism of type IA topoisomerases. Proc. Natl Acad. Sci. USA 99, 12126–12131 (2002).CrossRefGoogle Scholar
  149. 17.
    Crisona, N. J., Strick, T. R., Bensimon, D., Croquette, V. & Cozzarelli, N. R. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000).CrossRefGoogle Scholar
  150. 18.
    Essevaz-Roulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl Acad. Sci. USA 94, 11935–11940 (1997).CrossRefGoogle Scholar
  151. 19.
    Bockelmann, U., Thomen, R, Essevaz-Roulet, B., Viasnoff, V. & Heslot, F. Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J. 82, 1537–1553 (2002).CrossRefGoogle Scholar
  152. 20.
    Bianco, P. R. et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374–378 (2001).CrossRefGoogle Scholar
  153. 21.
    Dohoney, K. M. & Gelles, J. x-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409, 370–374 (2001).CrossRefGoogle Scholar
  154. 22.
    Koch, S. J., Shundrovsky, A., Jantzen, B. C. & Wang, M. D. Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys. J. 83, 1098–1105 (2002).CrossRefGoogle Scholar
  155. 23.
    Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995).CrossRefGoogle Scholar
  156. 24.
    Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).CrossRefGoogle Scholar
  157. 25.
    Davenport, R. J., Wuite, G. J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000).CrossRefGoogle Scholar
  158. 26.
    Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).CrossRefGoogle Scholar
  159. 27.
    Forde, N. R., Izhaky, D., Woodcock, G. R., Wuite, G. J. & Bustamante, C. Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 99, 11682–11687 (2002).CrossRefGoogle Scholar
  160. 28.
    Landick, R. RNA polymerase slides home: pause and termination site recognition. Cell 88, 741–744 (1997).CrossRefGoogle Scholar
  161. 29.
    Cui, Y & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA 97, 127–132 (2000).CrossRefGoogle Scholar
  162. 30.
    Bennink, M. L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nature Struct. Biol. 8, 606–610 (2001).CrossRefGoogle Scholar
  163. 31.
    Brower-Toland, B. D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl Acad. Sci. USA 99, 1960–1965 (2002).CrossRefGoogle Scholar
  164. 32.
    Smith, D. E. et al. The bacteriophage 29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).CrossRefGoogle Scholar
  165. 33.
    Calladine, C. R. & Drew, H. Understanding DNA (Academic, London, 1997).Google Scholar
  166. 34.
    Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).CrossRefGoogle Scholar
  167. 35.
    Leger, J. F. et al. Structural transitions of a twisted and stretched DNA molecule. Phys. Rev. Lett. 83, 1066–1069 (1999).CrossRefGoogle Scholar
  168. 36.
    Williams, M. C, Rouzina, I. & Bloomfield, V. A. Thermodynamics of DNA interactions from single molecule stretching experiments. Ace. Chem. Res. 35, 159–166 (2002).CrossRefGoogle Scholar
  169. 37.
    Wilkins, M. H. F., Gosling, R. G. & Seeds, W E. Nucleic acid: an extensible molecule? Nature 167, 759–760 (1951).CrossRefGoogle Scholar
  170. 38.
    Strick, T. R., Allemand, J. F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998).CrossRefGoogle Scholar
  171. 39.
    Allemand, J. F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl Acad. Sci. USA 95, 14152–14157 (1998).CrossRefGoogle Scholar
  172. 40.
    Pauling, L. & Corey, R. B. A proposed structure for the nucleic acids. Proc. Natl Acad. Sci. USA 39, 84–97 (1953).CrossRefGoogle Scholar
  173. 41.
    Sarkar, A., Leger, J. F., Chatenay, D. & Marko, J. F. Structural transitions in DNA driven by external force and torque. Phys. Rev. E 63, 051903–1–051903–10 (2001).CrossRefGoogle Scholar
  174. 42.
    Harada, Y. et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409, 113–115 (2001).CrossRefGoogle Scholar
  175. 43.
    Liphardt, J., Onoa, B., Smith, S. B., Tinoco, I. J. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).CrossRefGoogle Scholar
  176. 44.
    Hegner, M. DNA Handles for single molecule experiments. Single Mol. 1, 139–144 (2000).CrossRefGoogle Scholar
  177. 45.
    Carrion-Vazquez, M. et al. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol. 74, 63–91 (2000).CrossRefGoogle Scholar
  178. 46.
    Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).CrossRefGoogle Scholar
  179. 47.
    Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 4l5, 62–65 (2002).CrossRefGoogle Scholar
  180. 48.
    Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999).CrossRefGoogle Scholar
  181. 49.
    Strick, T., Allemand, J., Croquette, V. & Bensimon, D. Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74, 115–140 (2000).CrossRefGoogle Scholar
  182. 50.
    Alberts, B. et al. Molecular Biology of the Cell (Garland, New York, 2002).Google Scholar
  183. 1.
    Hoffmann, R. DNA as clay. Am. Sci. 82, 308–311 (1994).Google Scholar
  184. 2.
    Cuberes, M. T., Schlittler, R. R. & Gimzewski, J. K. Room-temperature repositioning of individual C-60 molecules at Cu steps: operation of a molecular counting device. Appl. Phys. Lett. 69, 3016–3018 (1996).CrossRefGoogle Scholar
  185. 3.
    Caruthers, M. H. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).CrossRefGoogle Scholar
  186. 4.
    Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).CrossRefGoogle Scholar
  187. 5.
    Seeman, N. C. Molecular craftwork with DNA. Chem. Intell. 1, 38–47 (1995).Google Scholar
  188. 6.
    Jaeger, L., Westhof, E. & Leontis, N. B. Tecto-RNA: modular assembly units for the construction of RNA nano-objeets. Nucleic Acids Res. 29, 455–463 (2001).CrossRefGoogle Scholar
  189. 7.
    Zhang, X., Yan, H., Shen, Z. & Seeman, N. C. Paranemic cohesion of topologically-closed DNA molecules. J. Am. Chem. Soc. 124, 12940–12941 (2002).CrossRefGoogle Scholar
  190. 8.
    Chen, J. & Seeman, N. C. The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).CrossRefGoogle Scholar
  191. 9.
    Seeman, N. C. Nucleic acid nanostructures and topology. Angew. Chem. Int. Edn Engl. 37, 3220–3238(1998).CrossRefGoogle Scholar
  192. 10.
    Li, X., Yang, X., Qi, J. & Seeman, N. C. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996).CrossRefGoogle Scholar
  193. 11.
    Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).CrossRefGoogle Scholar
  194. 12.
    Mao, C, Sun, W. & Seeman, N. C. Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999).CrossRefGoogle Scholar
  195. 13.
    LaBean, T. et al. The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000).CrossRefGoogle Scholar
  196. 14.
    Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A DNA nanomechanical device based on the B-Z transition. Nature 397, 144–146 (1999).CrossRefGoogle Scholar
  197. 15.
    Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. & Newmann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).CrossRefGoogle Scholar
  198. 16.
    Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).CrossRefGoogle Scholar
  199. 17.
    Niemeyer, C.M., Koehler, J. & Wuerdemann, C. DNA-directed assembly of bi-enzymic complexes from in vivo biotinylated NADP(H):FMN oxidoreductase and luciferase. ChemBioChem 3, 242–245 (2002).CrossRefGoogle Scholar
  200. 18.
    Robinson, B. H. & Seeman, N. C. The design of a biochip: a self-assembling molecular-scale memory device. Protein Eng. 1, 295–300 (1987).CrossRefGoogle Scholar
  201. 19.
    Keren, K. et al. Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002).CrossRefGoogle Scholar
  202. 20.
    Alivisatos, A. P. et al. Organization of’nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).CrossRefGoogle Scholar
  203. 21.
    Taton, T. A., Mucic, R. C., Mirkin, C. A. & Letsinger, R. L. The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. J. Am. Chem. Soc. 122, 6305–6306 (2000).CrossRefGoogle Scholar
  204. 22.
    Pena, S. R. N., Raina, S., Goodrich, G. P., Fedoroff, N. V. & Keating, C. D. Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. J. Am. Chem. Soc. 124, 7314–7323 (2002).CrossRefGoogle Scholar
  205. 23.
    Dekker, C. & Ratner, M. A. Electronic properties of DNA. Phys. World 14, 29–33 (2001).CrossRefGoogle Scholar
  206. 24.
    Fahlman, R. P. & Sen, D. DNA conformational switches as sensitive electronic sensors of analytes. J. Am. Chem. Soc. 124, 4610–4616 (2002).CrossRefGoogle Scholar
  207. 25.
    Seeman, N. C. The construction of 3-D stick figures from branched DNA. DNA Cell Biol 10, 475–486 (1991).CrossRefGoogle Scholar
  208. 26.
    Eckardt, L. H. et al. Chemical copying of connectivity. Nature 420, 286 (2002).CrossRefGoogle Scholar
  209. 27.
    Adleman, L. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).CrossRefGoogle Scholar
  210. 28.
    Winfree, E. in DNA Based Computers. Proceedings of a DIMACS Workshop, April 4,1995, Princeton University (eds Lipton, R. J & Baum, E. B.) 199–219 (American Mathematical Society, Providence, 1996).Google Scholar
  211. 29.
    Winfree, E. Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments. J. Biol. Mol. Struct. Dynamics Conversat. 11 2, 263–270 (2000).CrossRefGoogle Scholar
  212. 30.
    Mao, C, LaBean, T., Reif, J. H. & Seeman, N. C. Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature 407, 493–496 (2000).CrossRefGoogle Scholar
  213. 1.
    Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).CrossRefGoogle Scholar
  214. 2.
    Crick, F. H. C. The biological replication of macromolecules. Symp. Soc. Exp. Biol. 12, 138–163 (1958).Google Scholar
  215. 3.
    Doty, P. Inside Nucleic Acids (Harvey Lecture, 1960) (Academic, New York, 1961).Google Scholar
  216. 4.
    Marmur, J. & Doty, P. Thermal renaturation of deoxyribonucleic acids. J. Mol. Biol. 3, 585–594 (1961).CrossRefGoogle Scholar
  217. 5.
    Cairns, J. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol Biol. 6, 208–213 (1963).CrossRefGoogle Scholar
  218. 6.
    Kavenoff, R., Klotz, L. C. & Zimm, B. H. On the nature of chromosome-sized DNA molecules. Cold Spring Harb. Symp. Quant. Biol. 38, 1–8 (1974).CrossRefGoogle Scholar
  219. 7.
    Watson, J. D. & Crick, F. H. C. Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 (1953).CrossRefGoogle Scholar
  220. 8.
    Meselson, M. & Stahl, F. W. The replication of DNA in E. coli. Proc. Natl Acad. Sci. USA 44, 671–682 (1958).CrossRefGoogle Scholar
  221. 9.
    Kornberg, A. Biological synthesis of DNA. Science 131, 1503–1508 (1960).CrossRefGoogle Scholar
  222. 10.
    Epstein, R. H. et al. Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harb. Symp. Quant. Biol. 28, 375 (1963).CrossRefGoogle Scholar
  223. 11.
    Bonhoeffer, F. & Schaller, H. A method for selective enrichment of mutants based on the high UV sensitivity of DNA containing 5-bromouracil. Biochem. Biophys. Res. Commun. 20, 93 (1965).Google Scholar
  224. 12.
    Kohiyama, M., Cousin, D., Ryter, A. & Jacob, F. Mutants thermosensible d’Escherichia coli K/12.1. Isolement et caracterisation rapide. Ann. Inst. Pasteur 110, 465 (1966).Google Scholar
  225. 13.
    Huberman, J. A., Kornberg, A. & Alberts, B. M. Stimulation of T4 bacteriophage DNA polymerase by the protein product of T4 gene 32. J. Mol. Biol. 62, 39–52 (1971).CrossRefGoogle Scholar
  226. 14.
    Morris, C. F., Sinha, N. K. & Alberts, B. M. Reconstruction of bacteriophage T4 DNA replication apparatus from purified components: rolling circle replication following de novo chain initiation on a single-stranded circular DNA template. Proc. Natl Acad. Sci. USA 72, 4800–4804 (1975).CrossRefGoogle Scholar
  227. 15.
    Kornberg, A. & Baker, T. A. DNA Replication 2nd edn (Freeman, New York, 1992).Google Scholar
  228. 16.
    Okazaki R. et al. Mechanism of DNA chain growth: possible discontinuity and unusual secondary structure of newly synthesized chains. Proc. Natl Acad. Sci. USA 59, 598–605 (1968).CrossRefGoogle Scholar
  229. 17.
    Radding, C. M. Recombination activities of E. coli RecA protein. Cell 25, 3–4 (1981).CrossRefGoogle Scholar
  230. 18.
    Davey, M. J. & O’Donnell, M. Mechanisms of DNA replication. Curr. Opin. Chem. Biol. 4, 581–586 (2000).CrossRefGoogle Scholar
  231. 19.
    Waga, S. & Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751 (1998).CrossRefGoogle Scholar
  232. 20.
    Benkovic, S. J., Valentine, A. M. & Salinas F. Replisome-mediated DNA replication. Annu. Rev. Biochem. 70, 181–208 (2001).CrossRefGoogle Scholar
  233. 21.
    Alberts, B. M. The DNA enzymology of protein machines. Cold Spring Harb. Symp. Quant. Biol. 49, 1–12 (1984).CrossRefGoogle Scholar
  234. 22.
    Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998).CrossRefGoogle Scholar
  235. 23.
    Radding, C. Colloquium introduction. Links between recombination and replication: vital roles of recombination. Proc. Natl Acad. Sci. USA 98, 8172 (2001).CrossRefGoogle Scholar
  236. 24.
    Dwight, S. S. et al. Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res. 30, 69–72 (2002).CrossRefGoogle Scholar
  237. 25.
    Trakselis, M. A. & Benkovic, S. J. Intricacies in ATP-dependent clamp loading: variations across replication systems. Structure 9, 999–1004 (2001).CrossRefGoogle Scholar
  238. 26.
    National Research Council. Bio2010: Undergraduate Education to Prepare Biomedical Research Scientists (The National Academies Press, Washington DC, 2002).Google Scholar
  239. 27.
    Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland, New York, 2002).Google Scholar
  240. 1.
    Crick, F. The double helix: a personal view. Nature 248, 766–769 (1974).CrossRefGoogle Scholar
  241. 2.
    Friedberg, E. C. Correcting the Blueprint of Life: An Historical Account of the Discovery of DNA Repair Mechanisms (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1997).Google Scholar
  242. 3.
    Friedberg, E. C. The intersection between the birth of molecular biology and the DNA repair and mutagenesis field. DNA Repair 1, 855–867 (2002).CrossRefGoogle Scholar
  243. 4.
    Pontecorvo, G. Trends in Genetic Analysis (Columbia Univ. Press, New York, 1958).Google Scholar
  244. 5.
    Timoféeff-Ressovsky, N. W., Zimmer, K. G. & Delbrück, M. Über die Natur der Genmutation und der Genkostruktur. Nachr. Ges. Wiss. Gottingen FG VI Biol. NF. 1, 189–245 (1935).Google Scholar
  245. 6.
    Muller, H. J. Artificial transmutation of the gene. Science 66, 84–87 (1927).CrossRefGoogle Scholar
  246. 7.
    Zimmer, K. G. in Phage and the Origins of Molecular Biology Expanded edn (eds Cairns, J., Stent, G. S. & Watson, J. D.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1992).Google Scholar
  247. 8.
    Hollaender, A. & Curtis, J. T. Effect of sublethal doses of monochromatic ultraviolet radiation on bacteria in liquid suspension. Proc. Soc. Exp. Biol. Med. 33, 61–62 (1935–36).CrossRefGoogle Scholar
  248. 9.
    Keiner, A. Effect of visible light on the recovery of Streptomyces griseus conidia from ultraviolet irradiation injury. Proc. Natl Acad. Sci. USA 35, 73–79 (1949).CrossRefGoogle Scholar
  249. 10.
    Dulbecco, R. Reactivation of ultra-violet-inactivated bacteriophage by visible light. Nature 162, 949–950 (1949).CrossRefGoogle Scholar
  250. 11.
    Friedberg, E. C, Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (American Society of Microbiology Press, Washington DC, 1995).Google Scholar
  251. 12.
    Watson, J. D. & Crick, F. H. C. Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 (1953).CrossRefGoogle Scholar
  252. 13.
    Watson, J. D. The Double Helix. A Personal Account of the Discovery of the Structure of DNA (Atheneum, New York, 1968).Google Scholar
  253. 14.
    Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).CrossRefGoogle Scholar
  254. 15.
    Hanawalt, P. C. & Haynes, R. H. The repair of DNA. Sci. Am. 216, 36–43 (1967).CrossRefGoogle Scholar
  255. 16.
    Setlow, R. B. & Carrier, W. L. The disappearance of thymine dimers from DNA: an error-correcting mechanism. Proc. Natl Acad. Sci. USA. 51, 226–231 (1964).CrossRefGoogle Scholar
  256. 17.
    Rasmussen, D. E. & Painter, R. B. Evidence for repair of ultra-violet damaged deoxyribonucleic acid in cultured mammalian cells. Nature 203, 1360–1362 (1964).CrossRefGoogle Scholar
  257. 18.
    Lindahl, T. Instability and decay ofthe primary structure of DNA. Nature 362, 709–715 (1993).CrossRefGoogle Scholar
  258. 19.
    Le Page, F. et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159–171 (2000).CrossRefGoogle Scholar
  259. 20.
    Goodman, M. F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71, 17–50 (2002).CrossRefGoogle Scholar
  260. 21.
    Zhou, B.-B. S. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).CrossRefGoogle Scholar
  261. 22.
    Cory, S. & Adams J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).CrossRefGoogle Scholar
  262. 23.
    Boveri, T. The Origin of Malignant Tumors (Williams and Wilkins, Baltimore, MD, 1929).Google Scholar
  263. 24.
    Vogelstein, B. & Kinzler, K. W (eds) The Genetic Basis of Human Cancer (McGraw-Hill, New York, 1998).Google Scholar
  264. 25.
    Cleaver, J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652–656 (1968).CrossRefGoogle Scholar
  265. 26.
    De Weerd-Kastelein, E. A., Keijzer, W. & Bootsma, D. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nature New Biol. 238, 80–83 (1972).CrossRefGoogle Scholar
  266. 27.
    Wood, R. D. DNA repair in eukaryotes. Annu. Rev. Biochem. 65, 135–167 (1996).CrossRefGoogle Scholar
  267. 28.
    Sancar, A. DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996).CrossRefGoogle Scholar
  268. 29.
    Masutani, C. et al. Xeroderma pigmentosum variant: from a human genetic disorder to a novel DNA polymerase. Cold Spring Harbor Symp. Quant. Biol. 65, 71–80 (2000).CrossRefGoogle Scholar
  269. 30.
    Levinson, G., & Gutman, G. A. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 15, 5323–5338 (1987).CrossRefGoogle Scholar
  270. 31.
    Aaltonen, L. A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).CrossRefGoogle Scholar
  271. 32.
    Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).CrossRefGoogle Scholar
  272. 33.
    Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).CrossRefGoogle Scholar
  273. 34.
    Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells, Cell 75, 1227–1236 (1993).CrossRefGoogle Scholar
  274. 1.
    Ehrlich, P. The Croonian Lecture. On immunity with special reference to cell life. Proc. R. Soc. Lond. B 66, 424–448 (1900).Google Scholar
  275. 2.
    Landsteiner, K. The Specificity of Serological Reactions (Harvard Univ. Press, Boston, 1945).Google Scholar
  276. 3.
    Breinl, F. & Haurowitz, F. Untersuchungen des Präzipitates aus Hämoglobin und anti-Hämoglobin-Serum und Bemerkungen über die Natur der Antikörper. Hoppe-Seyler’s Z. Physiol. Chem. 192, 45–57 (1930).CrossRefGoogle Scholar
  277. 4.
    Jerne, N. K. The natural selection theory of antibody formation. Proc. Natl Acad. Sci. USA 41, 849–857 (1955).CrossRefGoogle Scholar
  278. 5.
    Talmage, D. W. Allergy and immunology. Annu. Rev. Med. 8, 239–256 (1957).CrossRefGoogle Scholar
  279. 6.
    Burnet, F. M. A modification of Jerne’s theory of antibody production using the concept of clonal selection. Aust. J. Sci. 20, 67–69 (1957).Google Scholar
  280. 7.
    Nossal, G. J. V. & Lederberg, J. Antibody production by single cells. Nature 181, 1419–1420 (1958).CrossRefGoogle Scholar
  281. 8.
    Edelman, G. M. & Gall, W. E. The antibody problem. Annu. Rev. Biochem. 38, 415–466 (1969).CrossRefGoogle Scholar
  282. 9.
    Hilschmann, N. & Craig, L. C. Amino acid sequence studies with Bence-Jones proteins. Proc. Natl Acad. Sci. USA 53, 1403–1409 (1965).CrossRefGoogle Scholar
  283. 10.
    Dreyer, W. J. & Bennett, J. C. The molecular basis of antibody formation: a paradox. Proc. Natl Acad. Sci. USA 54, 864–869 (1965).CrossRefGoogle Scholar
  284. 11.
    Wu, T. T. & Kabat, E. A. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211–250 (1970).CrossRefGoogle Scholar
  285. 12.
    Hozumi, N. & Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl Acad. Sci. USA 73, 3628–3632 (1976).CrossRefGoogle Scholar
  286. 13.
    Bernard, O., Hozumi, N. & Tonegawa, S. Sequences of mouse immunoglobulin light chain genes before and after somatic changes. Cell 15, 1133–1144 (1978).CrossRefGoogle Scholar
  287. 14.
    Kocks, C. & Rajewsky, K. Stable expression and somatic hypermutation of antibody V regions in B-cell developmental pathways. Annu. Rev. Immunol. 7, 537–559 (1989).CrossRefGoogle Scholar
  288. 15.
    Hedrick, S. M., Cohen, D. I., Nielsen, E. A. & Davis, M. M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153 (1984).CrossRefGoogle Scholar
  289. 16.
    Yanagi, Y. et al. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308, 145–149 (1984).CrossRefGoogle Scholar
  290. 17.
    Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).CrossRefGoogle Scholar
  291. 18.
    Bernard, O., Cory, S., Gerondakis, S., Webb, E. & Adams, J. M. Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO J. 2, 2375–2383 (1983).Google Scholar
  292. 19.
    Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-mycXo immortalize pre-B cells. Nature 335, 440–442 (1988).CrossRefGoogle Scholar
  293. 20.
    Donnelly, J. J., Ulmer, J. B., Shiver, J. W. & Liu, M. A. DNA vaccines. Annu. Rev. Immunol. 15, 617–648 (1997).CrossRefGoogle Scholar
  294. 21.
    Krieg, A. M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).CrossRefGoogle Scholar
  295. 22.
    Burnet, F. M. & Fenner, F. J. The Production of Antibodies (Macmillan, Melbourne, 1949).Google Scholar
  296. 23.
    Billingham, R. R, Brent, L. & Medawar, P. B. Actively acquired tolerance of foreign cells. Nature 172, 603–606 (1953).CrossRefGoogle Scholar
  297. 24.
    Nossal, G. J. V. & Pike, B. L. Clonal anergy: persistence in tolerant mice of antigen-binding B lymphocytes incapable of responding to antigen or mitogen. Proc. Natl Acad. Sci. USA 77, 1602–1606 (1980).CrossRefGoogle Scholar
  298. 1.
    Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).CrossRefGoogle Scholar
  299. 2.
    Brenner, S., Jacob, F. & Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961).CrossRefGoogle Scholar
  300. 3.
    Crick, F. H. C, Barnett, L., Brenner, S. & Watts-Tobin, R. J. General nature of the genetic code for proteins. Nature 192, 1227–1232 (1961).CrossRefGoogle Scholar
  301. 4.
    Nirenberg, M. W. & Matthaei, J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polynucleotides. Proc. Natl Acad. Sci. USA 47, 1588–1602 (1961).CrossRefGoogle Scholar
  302. 5.
    Saiki, R. K. et al. Enzymatic amplification of ß-globin sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).CrossRefGoogle Scholar
  303. 6.
    Maxam, A. M. & Gilbert, W. A new method of sequencing DNA. Proc. Natl Acad. Sci. USA 74, 560–564 (1977).CrossRefGoogle Scholar
  304. 7.
    Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 444–448 (1975).CrossRefGoogle Scholar
  305. 8.
    Sanger, F. et al. Nucleotide sequence of bacteriophage ϕX174. Nature 265, 678–695 (1977).CrossRefGoogle Scholar
  306. 9.
    Hunkapiller, M. W. & Hood, L. New protein sequenator with increased sensitivity. Science 207, 523–525 (1980).CrossRefGoogle Scholar
  307. 10.
    Horvath, S. J., Firca, J. R., Hunkapiller, T., Hunkapiller M. W. & Hood, L. An automated DNA synthesizer employing deoxynucleoside 3’ phosphoramidites. Methods Enzymol. 154, 314–326 (1987).CrossRefGoogle Scholar
  308. 11.
    Kent, S. B. H., Hood, L. E., Beilan, H., Meister S. & Geiser, T. High yield chemical synthesis of biologically active peptides on an automated peptide synthesizer of novel design. Peptides 5, 185–188 (1984).CrossRefGoogle Scholar
  309. 12.
    Smith, L. M. et al. Fluorescence detection in automated DNA sequence analysis. Nature321, 674–679 (1986).CrossRefGoogle Scholar
  310. 13.
    Collins, F. & Galas, D. J. A new five-year plan for the US Human Genome Project. Science 262, 43–46 (1993).CrossRefGoogle Scholar
  311. 14.
    Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).CrossRefGoogle Scholar
  312. 15.
    International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).CrossRefGoogle Scholar
  313. 16.
    Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).CrossRefGoogle Scholar
  314. 17.
    Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–933 (2001).CrossRefGoogle Scholar
  315. 18.
    Baliga, N. S. et al. Coordinate regulators of energy transduction modules in the Halobacterium sp. analyzed by a global systems approach. Proc. Natl Acad. Sci. USA 99, 14913–14918 (2002).CrossRefGoogle Scholar
  316. 19.
    Aderem A. & Hood, L. Immunology in the post-genomic era. Nature Immunol. 2, 1–3 (2001).CrossRefGoogle Scholar
  317. 20.
    Dennis, C. & Gallagher, R. (eds) The Human Genome (Palgrave, Basingstoke, 2001).Google Scholar
  318. 1.
    Avery, O. T., MacLeod, C. M. & McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J. Exp. Med. 79,137–158 (1944).CrossRefGoogle Scholar
  319. 2.
    Sandman, K., Pereira, S. L. & Reeve, J. N. Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome. Cell Mol. Life Sci. 54, 1350–1364 (1998).CrossRefGoogle Scholar
  320. 3.
    Ouzounis, C. A. & Kyrpides, N. C. Parallel origins of the nucleosome core and eukaryotic transcription from Archaea. J. Mol. Evol. 42,234–239 (1996).CrossRefGoogle Scholar
  321. 4.
    Bailey, K. A. & Reeve, J. N. DNA repeats and archaeal nucleosome positioning. Res. Microbiol. 150, 701–709 (1999).CrossRefGoogle Scholar
  322. 5.
    Dinger, M. E., Baillie, G. J. & Musgrave, D. R. Growth phase-dependent expression and degradation of histones in the thermophilic archaeon Thertnococcus zilligii. Mol. Microbiol. 36, 876–885 (2000).CrossRefGoogle Scholar
  323. 6.
    Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184,868–871 (1974).CrossRefGoogle Scholar
  324. 7.
    Weintraub, H. & Groudine, M. Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856 (1976).CrossRefGoogle Scholar
  325. 8.
    Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).CrossRefGoogle Scholar
  326. 9.
    Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).CrossRefGoogle Scholar
  327. 10.
    Ahmad, K. & Henikoff, S. Histone H3 variants specify modes of chromatin assembly. Proc. Natl Acad. Sci. USA 10.1073/pnas. 172403699 (2002).Google Scholar
  328. 11.
    Redon, C. et al. Histone H2A variants H2AX and H2AZ. Curr. Opin. Genet. Dev. 12, 162–169 (2002).CrossRefGoogle Scholar
  329. 12.
    Smith, M. M. Centromeres and variant histones: what, where, when and why? Curr. Opin. Cell Biol. 14, 279–285 (2002).CrossRefGoogle Scholar
  330. 13.
    Wolffe, A. P. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem. Sci. 19, 240–244 (1994).CrossRefGoogle Scholar
  331. 14.
    Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).CrossRefGoogle Scholar
  332. 15.
    Cosma, M. P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97, 299–311(1999).CrossRefGoogle Scholar
  333. 16.
    Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-ß promoter. Cell 103, 667–678 (2000).CrossRefGoogle Scholar
  334. 17.
    Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).CrossRefGoogle Scholar
  335. 18.
    Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).CrossRefGoogle Scholar
  336. 19.
    Allshire, R. RNAi and heterochromatin—a hushed-up affair. Science 297, 1818–1819 (2002).CrossRefGoogle Scholar
  337. 20.
    Chadwick, B. P. & Willard, H. F. Cell cycle-dependent localization of macroH2A in chromatin ofthe inactiveXchromosome. J. Cell Biol. 157, 1113–1123 (2002).CrossRefGoogle Scholar
  338. 21.
    Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).CrossRefGoogle Scholar
  339. 22.
    Hakimi, M. A. et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418, 994–998 (2002).CrossRefGoogle Scholar
  340. 23.
    Grunstein, M. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol. 9, 383–387 (1997).CrossRefGoogle Scholar
  341. 24.
    Kelley, R. L. & Kuroda, M. I. Noncoding RNA genes in dosage compensation and imprinting. Cell 103, 9–12 (2000).CrossRefGoogle Scholar
  342. 25.
    Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the igf2 gene. Nature 405, 482–485 (2000).CrossRefGoogle Scholar
  343. 26.
    Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).CrossRefGoogle Scholar
  344. 27.
    Richards, E. J. & Elgin, S. C. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500 (2002).CrossRefGoogle Scholar
  345. 28.
    Jackson, I. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).CrossRefGoogle Scholar
  346. 29.
    Mutskov, V. J., Farrell, C. M., Wade, P. A., Wolffe, A. P. & Felsenfeld, G. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev. 16, 1540–1554 (2002).CrossRefGoogle Scholar
  347. 30.
    Weintraub, H., Flint, S. J., Leffak, I. M., Groudine, M. & Grainger, R. M. The generation and propagation of variegated chromosome structures. Cold Spring Harb. Symp. Quant. Biol. 42, 401–407 (1978).CrossRefGoogle Scholar
  348. 31.
    Francis, N. J. & Kingston, R. E. Mechanisms of transcriptional memory. Nature Rev. Mol. Cell Biol. 2, 409–421 (2001).CrossRefGoogle Scholar
  349. 32.
    Cavalli G. & Paro, R. Epigenetic inheritance of active chromatin after removal ofthe main transactivator. Science 286, 955–958 (1999).CrossRefGoogle Scholar
  350. 33.
    Sewalt, R. G. et al. Selective interactions between vertebrate polycomb homologs and the SUV39H1 histone lysine methyltransferase suggest that histone H3–K9 methylation contributes to chromosomal targeting of Polycomb group proteins. Mol. CellBiol. 22, 5539–5553 (2002).CrossRefGoogle Scholar
  351. 34.
    Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).CrossRefGoogle Scholar
  352. 35.
    Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001).CrossRefGoogle Scholar
  353. 36.
    Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653–656 (1998).CrossRefGoogle Scholar
  354. 37.
    Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998).CrossRefGoogle Scholar
  355. 38.
    Hart, C. M. & Laemmli, U. K. Facilitation of chromatin dynamics by SARs. Curr. Opin. Genet. Dev. 8, 519–525 (1998).CrossRefGoogle Scholar
  356. 39.
    Misteli, T. Protein dynamics: implications for nuclear architecture and gene expression. Science 29l, 843–847 (2001).CrossRefGoogle Scholar
  357. 40.
    Hager, G. L., Elbi, C. & Becker, M. Protein dynamics in the nuclear compartment. Curr. Opin. Genet. Dev. 12, 137–141 (2002).CrossRefGoogle Scholar
  358. 41.
    Alberts, B. et al. Essential Cell Biology: An Introduction to the Molecular Biology ofthe Cell (Garland, New York, 1998).Google Scholar
  359. 42.
    Luger, K., Mader, A. W, Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Â resolution. Nature 389, 251–260 (1997).CrossRefGoogle Scholar
  360. 43.
    Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).CrossRefGoogle Scholar
  361. 44.
    Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP 1 proteins. Nature 410, 116–120 (2001).CrossRefGoogle Scholar
  362. 45.
    Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).CrossRefGoogle Scholar
  363. 46.
    West, A. G., Gaszner, M. & Felsenfeld, G. Insulators: many functions, many mechanisms. Genes Dev. 16, 271–288 (2002).CrossRefGoogle Scholar
  364. 47.
    Goll, M. G. & Bestor, T. H. Histone modification and replacement in chromatin activation. Genes Dev. 16, 1739–1742 (2002).CrossRefGoogle Scholar
  365. 48.
    Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).CrossRefGoogle Scholar
  366. 49.
    Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720 (1999).CrossRefGoogle Scholar
  367. 50.
    van Leeuwen, E, Gafken, P. R. & Gottschling, D. E. Dotlp modulates silencing in yeast by methylation ofthe nucleosome core. Cell 109, 745–756 (2002).CrossRefGoogle Scholar
  368. 51.
    Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dotl is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).CrossRefGoogle Scholar

Copyright information

© Nature Publishing Group 2003

Authors and Affiliations

  • Carina Dennis
  • Philip Campbell
  • J. D. Watson
  • F. H. C. Crick
  • M. H. F. Wilkins
  • A. R. Stokes
  • H. R. Wilson
  • Rosalind E. Franklin
  • R. G. Gosling
  • Robert Olby
  • Maclyn McCarty
  • Brenda Maddox
  • Svante Pääbo
  • Aravinda Chakravarti
  • Peter Little
  • John I. Bell
  • Martin Kemp
  • Philip Ball
  • Carlos Bustamante
  • Zev Bryant
  • Steven B. Smith
  • Nadrian C. Seeman
  • Bruce Alberts
  • Errol C. Friedberg
  • Gustav J. V. Nossal
  • Leroy Hood
  • David Galas
  • Gary Felsenfeld
  • Mark Groudine

There are no affiliations available

Personalised recommendations