Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 118))

  • 1469 Accesses

Abstract

Let us consider a fluid in a local thermodynamical equilibrium. Then we know from thermodynamics that the thermodynamical state of the fluid is completely determined by any two thermodynamic variables . Most often, we shall note by the same letter the corresponding mathematical functions, though they differ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Abgrall, Généralisation du schéma de Roe pour le calcul d’écoulements de gaz à concentrations variables (La Recherche Aérospatiale, 1988), pp. 31–43

    Google Scholar 

  2. J. Anderson, Modern Compressible Flow with Historical Perspective. McGraw-Hill Series in Mechanical Engineering (McGraw-Hill, New York, 1982)

    Google Scholar 

  3. A. Beccantini, E. Studer, The reactive Riemann problem for thermally perfect gases at all combustion regimes. Int. J. Numer. Methods Fluids 64, 269–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Ben-Artzi, The generalized Riemann problem for reactive flows. J. Comput. Phys. 81, 70–101 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Ben-Artzi, J. Falcovitz, A second-order Godunov-type scheme for compressible fluid dynamics. J. Comput. Phys. 55, 1–32 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Bukiet, Application of front tracking to two-dimensional curved detonation fronts. SIAM J. Sci. Statist. Comput. 9, 80–99 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 41 Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, New York, 1989

    Google Scholar 

  8. G.-Q. Chen, H. Frid, Uniqueness and asymptotic stability of Riemann solutions for the compressible Euler equations. Trans. Am. Math. Soc. 353, 1103–1117 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. G.-Q. Chen, D. Hoff, K. Trivisa, Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data. Arch. Ration. Mech. Anal. 166, 321–358 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. G.Q. Chen, D.H. Wagner, Large time, weak solutions to reacting Euler equations, in Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects (Taormina, 1992). Notes Numer. Fluid Mech., vol. 43. Friedr. Vieweg, Braunschweig, 1993, pp. 144–149

    Google Scholar 

  11. G.Q. Chen, D.H. Wagner, Global entropy solutions to exothermically reacting, compressible Euler equations. J. Differ. Equ. 191, 277–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Chéret, La Détonation des Explosifs Condensés, Masson, Paris, 1988. Tome 1. Série scientifique, Collection CEA.

    Google Scholar 

  13. A.J. Chorin, Random choice methods with application to reacting gas flow. J. Comput. Phys. 25, 253–272 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, New York, 1979)

    Book  MATH  Google Scholar 

  15. P. Colella, A. Majda, V. Roytburd, Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Stat. Comput. 7, 1059–1080 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. R.M. Colombo, A. Corli, Sonic hyperbolic phase transitions and Chapman-Jouguet detonations. J. Differ. Equ. 184, 321–347 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer, New York-Heidelberg, 1976). Reprinting of the 1948 original, Applied Mathematical Sciences, vol. 21

    Google Scholar 

  18. J.-P. Croisille, P. Delorme, Kinetic symmetrizations and pressure laws for the Euler equations. Phys. D 57, 395–416 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-P. Croisille, P. Villedieu, Entropies de Lax pour les équations d’Euler en déséquilibre thermochimique. C. R. Acad. Sci. Paris Sér. I Math. 318, 723–727 (1994)

    MathSciNet  MATH  Google Scholar 

  20. C.M. Dafermos, Equivalence of referential and spatial field equations in continuum physics, in Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects (Taormina, 1992). Notes Numer. Fluid Mech., vol. 43, Friedr. Vieweg, Braunschweig, 1993, pp. 179–183

    Google Scholar 

  21. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn., vol. 325 (Springer, Berlin, 2005)

    Google Scholar 

  22. W. Dahmen, S. Müller, A. Voß, Riemann problem for the Euler equation with non-convex equation of state including phase transitions, in Analysis and Numerics for Conservation Laws (Springer, Berlin, 2005), pp. 137–162

    MATH  Google Scholar 

  23. B. Després, Lois de Conservations Eulériennes, Lagrangiennes et Méthodes Numériques. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 68 (Springer, Berlin, 2010)

    Google Scholar 

  24. F. Dubois, Concavity of Thermostatic Entropy and Convexity of Lax’s Mathematical Entropy (Rech. Aérospat., 1990), pp. 77–80

    Google Scholar 

  25. B. Einfeldt, On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25, 294–318 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Einfeldt, C.-D. Munz, P.L. Roe, B. Sjögreen, On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Embid, J. Hunter, A. Majda, Simplified asymptotic equations for the transition to detonation in reactive granular materials. SIAM J. Appl. Math. 52, 1199–1237 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Fey, R. Jeltsch, S. Müller, The influence of a source term, an example: chemically reacting hypersonic flow, in Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects (Taormina, 1992). Notes Numer. Fluid Mech., vol. 43 (Friedr. Vieweg, Braunschweig, 1993), pp. 235–245

    Google Scholar 

  29. W. Fickett, W. Davis, Detonation (University of California Press, Berkeley-Los Angeles-London, 1979)

    Google Scholar 

  30. D. Friedlander, D. Serre, eds., The Handbook of Mathematical Fluid Dynamics (Elsevier, Amsterdam, 2002)

    MATH  Google Scholar 

  31. I. Gasser, P. Szmolyan, A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24, 968–986 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Giovangigli, Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser Boston, Boston, 1999)

    Google Scholar 

  33. H. Hattori, The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion—isothermal case. Arch. Rational Mech. Anal. 92, 247–263 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. C.-H. Hsu, S.-S. Lin, Some qualitative properties of the Riemann problem in gas dynamical combustion. J. Differ. Equ. 140, 10–43 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Jeffrey, Quasilinear Hyperbolic Systems and Waves (Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1976). Research Notes in Mathematics, No. 5

    Google Scholar 

  36. A. Jeffrey, T. Taniuti, Non-Linear Wave Propagation. With Applications to Physics and Magnetohydrodynamics (Academic Press, New York-London, 1964)

    Google Scholar 

  37. S. Kawashima, A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations. Commun. Pure Appl. Math. 47, 1547–1569 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Lai, On the Riemann problem for a scalar Zeldovich–von Neumann–Döring combustion model. SIAM J. Math. Anal. 46, 2404–2443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Larrouturou, L. Fézoui, On the equations of multi-component perfect or real gas inviscid flow, in Nonlinear Hyperbolic Problems (Bordeaux, 1988). Lecture Notes in Math., vol. 1402 (Springer, Berlin, 1989), pp. 69–98

    Google Scholar 

  40. O. Le Métayer, J. Massoni, R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205, 567–610 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. R.J. LeVeque, Numerical Methods for Conservation Laws. Lectures in Mathematics, 2nd edn. (ETH Zürich, Birkhäuser, Basel, 1992)

    Google Scholar 

  42. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  43. J. Li, P. Zhang, The transition from Zeldovich-von Neumann-Doring to Chapman-Jouguet theories for a nonconvex scalar combustion model. SIAM J. Math. Anal. 34, 675–699 (2002) (electronic)

    Google Scholar 

  44. J. Lighthill, Waves in Fluids. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 2001). Reprint of the 1978 original

    Google Scholar 

  45. T.-P. Liu, L.A. Ying, Nonlinear stability of strong detonations for a viscous combustion model. SIAM J. Math. Anal. 26, 519–528 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Lowe, J. Clarke, A class of exact solutions for the Euler equations with sources. I. Math. Comput. Model. 36, 275–291 (2002). Mathematical modelling of nonlinear systems (Leeds, 1999)

    Google Scholar 

  47. A. Majda, A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70–93 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Menikoff, B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61, 75–130 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.-L. Montagné, H. C. Yee, M. Vinokur, Comparative study of high-resolution shock-capturing schemes for a real gas. AIAA J 27, 1332–1346 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Müller, A. Voß, The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput. 28, 651–681 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. E.S. Oran, J.P. Boris, Numerical simulation of reacting flows, in Fluid Dynamical Aspects of Combustion Theory. Pitman Res. Notes Math. Ser., vol. 223 (Longman Sci. Tech., Harlow, 1991), pp. 268–304

    Google Scholar 

  52. Y.-J. Peng, Euler-Lagrange change of variables in conservation laws. Nonlinearity 20, 1927–1953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. D. Serre, Systèmes de lois de conservation. I, Fondations. [Foundations]. (Diderot Editeur, Paris, 1996). Hyperbolicité, entropies, ondes de choc. [Hyperbolicity, entropies, shock waves]

    Google Scholar 

  54. D. Serre, Systems of Conservation Laws. 1 (Cambridge University Press, Cambridge, 1999). Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon

    Google Scholar 

  55. D. Serre, Systems of Conservation Laws. 2 (Cambridge University Press, Cambridge, 2000). Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by I.N. Sneddon

    Google Scholar 

  56. W. Sheng, D.C. Tan, Weak deflagration solutions to the simplest combustion model. J. Differ. Equ. 107, 207–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  57. R.G. Smith, The Riemann problem in gas dynamics. Trans. Am. Math. Soc. 249, 1–50 (1980)

    Article  MathSciNet  Google Scholar 

  58. J.A. Smoller, Shock Waves and Reaction-Diffusion Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, 2nd edn. (Springer, New York, 1994)

    Google Scholar 

  59. J.A. Smoller, J.B. Temple, Z.P. Xin, Instability of rarefaction shocks in systems of conservation laws. Arch. Rational Mech. Anal. 112, 63–81 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  60. G.A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  61. D.C. Tan, T. Zhang, Riemann problem for the self-similar ZND-model in gas dynamical combustion. J. Differ. Equ. 95, 331–369 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  62. T. Taniuti, K. Nishihara, Nonlinear waves, Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1983, vol. 15. Translated from the Japanese by Taniuti and Alan Jeffrey

    Google Scholar 

  63. Z.H. Teng, A.J. Chorin, T.P. Liu, Riemann problems for reacting gas, with applications to transition. SIAM J. Appl. Math. 42, 964–981 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Thouvenin, Les mécanismes élémentaires de la détonique (unpublished)

    Google Scholar 

  65. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. (Springer, Berlin, 2009). A practical introduction

    Google Scholar 

  66. D.H. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differ. Equ. 68, 118–136 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  67. D.H. Wagner, Conservation laws, coordinate transformations, and differential forms, in Hyperbolic Problems: Theory, Numerics, Applications (Stony Brook, NY, 1994) (World Science Publication, River Edge, 1996), pp. 471–477

    Google Scholar 

  68. G. Warnecke, ed., Analysis and Numerics for Conservation Laws (Springer, Berlin, 2005)

    MATH  Google Scholar 

  69. B. Wendroff, The Riemann problem for materials with nonconvex equations of state. I. Isentropic flow. J. Math. Anal. Appl. 38, 454–466 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  70. G.B. Whitham, Linear and nonlinear waves, Pure and Applied Mathematics (New York) (Wiley, New York, 1999). Reprint of the 1974 original, A Wiley-Interscience Publication

    Google Scholar 

  71. F. Williams, Combustion Theory (Menlo Park Publishing company, Benjamin/Cummings, 1985)

    Google Scholar 

  72. T. Zhang, Y.X. Zheng, Riemann problem for gasdynamic combustion. J. Differ. Equ. 77, 203–230 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Godlewski, E., Raviart, PA. (2021). Gas Dynamics and Reacting Flows. In: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol 118. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1344-3_3

Download citation

Publish with us

Policies and ethics