Skip to main content

PUFAs and Their Metabolites in Carcinogenesis

  • Chapter
  • First Online:
Molecular Biochemical Aspects of Cancer

Abstract

DNA damage due to endogenous and exogenous agents leads to activation of oncogenes. To prevent the activation of oncogenesis, there are many endogenous DNA repair mechanisms. But less well-known is the observation that essential fatty acids and their metabolites participate in mutagenesis and carcinogenesis. Our studies revealed that essential fatty acids and their metabolites such as prostaglandins have modulator influence on mutagenesis and DNA repair process. It appears that bioactive lipids (that include not only essential fatty acids and their long-chain metabolites such as GLA, DGLA AA, EPA, and DHA but also prostaglandins, leukotrienes, thromboxanes, lipoxins resolvins, protectins, and maresins) are able to act on the immune system to eliminate cells harboring DNA damage (this includes cells that contain micronucleus and bacterial and viral DNA and their genes). This interaction among bioactive lipids, immunocytes, and cytokines seems to be critical to prevent carcinogenesis and cancer. Alternatively, these bioactive lipids are able to eliminate cancer cells by their direct cytotoxic action on tumor cells. In addition, some, if not all, of the bioactive lipids are able to activate immunocytes, enhance the formation of toxic lipid peroxides in tumor cells, and mediate the cytotoxic action of various cytokines to induce apoptosis of tumor cells and eliminate them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tian H, Gao Z, Li H, Zhang B, Wang G, Zhang Q, Pei D, Zheng J. DNA damage response – a double-edged sword in cancer prevention and cancer therapy. Cancer Lett. 2015;358:8–16.

    Article  CAS  PubMed  Google Scholar 

  2. Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.

    Article  CAS  PubMed  Google Scholar 

  3. Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol. 2005;168:1065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve AE. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392:402–5.

    Article  CAS  PubMed  Google Scholar 

  5. Behn M, Qun S, Pankow W, Havemann K, Schuermann M. Frequent detection of ras and p53 mutations in brush cytology samples from lung cancer patients by a restriction fragment length polymorphism-based “enriched PCR” technique. Clin Cancer Res. 1998;4:361–71.

    CAS  PubMed  Google Scholar 

  6. Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81.

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125:3335–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Waterhouse P, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270:985–8.

    Article  CAS  PubMed  Google Scholar 

  9. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.

    Article  CAS  PubMed  Google Scholar 

  10. Buchbinder E, Hodi FS. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J Clin Invest. 2015;125:3377–83.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Das UN, Devi GR, Rao KP, Rao MS. Prevention and/or reversibility of genetic damage induced by diphenylhydantoin to the bone marrow cells of mice by colchicine: relevance to prostaglandin involvement. IRCS Med Sci. 1983;11:122.

    CAS  Google Scholar 

  12. Das UN. Colchicine can prevent and/or reverse mutagenesis: possible role for prostaglandins. IRCS J Med Sci. 1983;11:300.

    CAS  Google Scholar 

  13. Devi GR, Das UN, Rao KP, Rao MS. Prevention of radiation-induced poly-chromatophilia by prostaglandin El and colchicine. IRCS Med Sci. 1983;11:863.

    Google Scholar 

  14. Das UN, Devi GR, Rao KP, Rao MS. Modification of benzo (a) pyrene induced genetic damage to the bone marrow cells of mice by prostaglandins. IRCS Med Sci. 1983;11:823.

    CAS  Google Scholar 

  15. Das UN, Devi GR, Rao KP, Rao MS. Prevention and/or reversibility of genetic damage induced by gamma radiation in the germ cells of mice by colchicine: possible relevance to prostaglandin involvement. Int J Tissue React. 1984;6:57–63.

    CAS  PubMed  Google Scholar 

  16. Devi GR, Das UN, Rao KP, Rao MS. Prostaglandins and mutagenesis: prevention and/or reversibility of genetic damage induced by benzo (a) pyrene in the bone marrow cells of mice by prostaglandins El. Prostaglandins Leukot Med. 1984;15:287–91.

    Article  Google Scholar 

  17. Devi GR, Das UN, Rao KP, Rao MS. Prostaglandins and mutagenesis: modification of phenytoin-induced genetic damage by prostaglandins in lymphocyte cultures. Prostaglandins Leukot Med. 1984;15:109–13.

    Article  Google Scholar 

  18. Das UN, Devi GR, Rao KP, Rao MS. Benzo (a) pyrene and gamma-radiation-induced genetic damage in mice can be prevented by gamma-linolenic acid but not by arachidonic acid. Nutr Res. 1985;5:101–5.

    Article  CAS  Google Scholar 

  19. Das UN, Devi GR, Rao KP, Rao MS. Prostaglandins and their precursors can modify genetic damage induced by gamma-radiation and benzo (a,) pyrene. Prostaglandins. 1985;29:911–20.

    Article  CAS  PubMed  Google Scholar 

  20. Das UN, Devi GR, Rao KP, Rao MS. Benzo (a) pyrene-induced genetic damage in mice can be prevented by evening primrose oil. IRCS Med Sci. 1985;13:316.

    CAS  Google Scholar 

  21. Das UN, et al. Precursors of prostaglandins and other n-6 essential fatty acids can modify benzo (a) pyrene-induced chromosomal damage to human lymphocytes in vitro. Nutr Rep Int. 1987;36:1267–70.

    CAS  Google Scholar 

  22. Das UN, Devi GR, Rao KP, Rao MS. Prostaglandins can modify gamma-radiation and chemical-induced cytotoxicity and genetic damage both in vitro and in vivo. Prostaglandins. 1989;38:689–94.

    Article  CAS  PubMed  Google Scholar 

  23. Das UN. Nutrients, essential fatty acids and prostaglandins interact to augment immune response and prevent genetic damage and cancer. Nutrition. 1989;5:106–9.

    CAS  PubMed  Google Scholar 

  24. Koratkar R, Das UN, Sangeetha PS, Ramesh G, Padma M, Sravan Kumar K, Madhavi N. Prostacyclin is a potent anti-mutagen. Prostaglandins Leukot Essent Fatty Acids. 1993;48:175–84.

    Article  CAS  PubMed  Google Scholar 

  25. Das UN, Rao KP. Effect of γ-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins Leukot Essent Fatty Acids. 2006;74:165–73.

    Article  CAS  PubMed  Google Scholar 

  26. Shivani P, Rao KP, Chaudhury JR, Ahmed J, Rao BR, Kanjilal S, Hasan Q, Das UN. Effect of polyunsaturated fatty acids on diphenyl hydantoin-induced genetic damage in-vitro and in vivo. Prostaglandins Leukot Essent Fatty Acids. 2009;80:43–50.

    Article  CAS  Google Scholar 

  27. Martins G, Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol. 2008;26:133–69.

    Article  CAS  PubMed  Google Scholar 

  28. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, Srivastava M, Divekar DP, Beaton L, Hogan JJ, Fagarasan S, Liston A, Smith KG, Vinuesa CG. Foxp3+follicular regulatory T cells control the germinal center response. Nat Med. 2011;17:975–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bankoti R, Ogawa C, Nguyen T, Emadi L, Couse M, Salehi S, et al. Differential regulation of effector and regulatory T cell function by Blimp1. Sci Rep. 2017;7:12078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hooper KM, Kong W, Ganea D. Prostaglandin E2 inhibits Tr1 cell differentiation through suppression of c-Maf. PLoS One. 2017;12:e0179184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hooper KM, Yen JH, Kong W, Rahbari KM, Kuo PC, Gamero AM, Ganea D. Prostaglandin E2 inhibition of IL-27 production in murine dendritic cells: a novel mechanism that involves IRF1. J Immunol. 2017;198:1521–30.

    Article  CAS  PubMed  Google Scholar 

  32. Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, McKenzie BS, Kastelein RA, Cua DJ, de Waal Malefyt R. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med. 2009;206:535–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schlager SI, Ohanian SH. Correlation between lipid synthesis in tumor cells and their sensitivity to humoral immune attack. Science. 1977;197:773–6.

    Article  CAS  PubMed  Google Scholar 

  34. Schlager SI, Ohanian SH, Borsos T. Correlation between the ability of tumor cells to incorporate specific fatty acids and their sensitivity to killing by a specific antibody plus guinea pig complement. J Natl Cancer Inst. 1978;61:931–4.

    CAS  PubMed  Google Scholar 

  35. Schlager SI, Ohanian SH. Modulation of tumor cell susceptibility to humoral immune killing through chemical and physical manipulation of cellular lipid and fatty acid composition. J Immunol. 1980;125:1196–200.

    CAS  PubMed  Google Scholar 

  36. Schlager SI, Madden LD, Meltzer MS, Bara S, Mamula MJ. Role of macrophage lipids in regulating tumoricidal activity. Cell Immunol. 1983;77:52–68.

    Article  CAS  PubMed  Google Scholar 

  37. Schlager SI, Meltzer MS, Madden LD. Role of membrane lipids in the immunological killing of tumor cells: II. Effector cell lipids. Lipids. 1983;18:483–8.

    Article  CAS  PubMed  Google Scholar 

  38. Schlager SI, Ohanian SH. Role of membrane lipids in the immunological killing of tumor cells: I. Target cell lipids. Lipids. 1983;18:475–82.

    Article  CAS  PubMed  Google Scholar 

  39. Schlager SI, Meltzer MS. Role of macrophage lipids in regulating tumoricidal activity. II. Internal genetic and external physiologic regulatory factors controlling macrophage tumor cytotoxicity also control characteristic lipid changes associated with tumoricidal cells. Cell Immunol. 1983;80:10–9.

    Article  CAS  PubMed  Google Scholar 

  40. Begin ME, Das UN, Ells G, Horrobin DF. Selective killing of human cancer cells by polyunsaturated fatty acids. Prostaglandins Leukot Med. 1985;19:177–86.

    Article  CAS  PubMed  Google Scholar 

  41. Begin ME, Ells G, Das UN, Horrobin DF. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst. 1986;77:1053–62.

    CAS  PubMed  Google Scholar 

  42. Das UN. Lipoxins, resolvins, protectins, maresins and nitrolipids and their clinical implications with specific reference to cancer: part I. Clin Lipidol. 2013;8:437–63.

    Article  CAS  Google Scholar 

  43. Das UN, Prasad VV, Reddy DR. Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett. 1995;94:147–55.

    Article  CAS  PubMed  Google Scholar 

  44. Das UN. Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins Leukot Essen Fatty Acids. 1999;61:157–63.

    Article  CAS  Google Scholar 

  45. Das UN. Essential fatty acids enhance free radical generation and lipid peroxidation to induce apoptosis of tumor cells. Clin Lipidol. 2011;6:463–89.

    Article  CAS  Google Scholar 

  46. Das UN. Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Lett. 1991;56:235–43.

    Article  CAS  PubMed  Google Scholar 

  47. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447:1007–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Butler JM, Rafii S. Painkillers caught in blood-cell trafficking. Nature. 2013;495:317–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hoggatt J, Mohammad KS, Singh P, Hoggatt AF, Chitteti BR, Speth JM, et al. Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature. 2013;495:365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chan MM-Y, Moore AR. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J Immunol. 2010;184:6418–26.

    Article  CAS  PubMed  Google Scholar 

  51. Whiteside TL, Jackson EK. Adenosine and prostaglandin E2 production by human inducible regulatory T cells in health and disease. Front Immunol. 2013;4:212. https://doi.org/10.3389/fimmu.2013.00212.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Froloy A, Yang L, Dong H, Hammock BD, Crofford LJ. Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. Prostaglandins Leukot Essent Fatty Acids. 2013;89:351–8.

    Article  CAS  Google Scholar 

  53. Blaho VA, Buczynski MW, Brown CR, Dennis EA. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. J Biol Chem. 2009;284:21599–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith RJ. Modulation of phagocytosis by and lysosomal enzyme secretion from guinea-pig neutrophils: effect of nonsteroid anti-inflammatory agents and prostaglandins. J Pharmacol Exp Ther. 1977;200:647–57.

    CAS  PubMed  Google Scholar 

  55. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–9.

    Article  CAS  PubMed  Google Scholar 

  56. Qian X, Zhang J, Liu J. Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway. J Biol Chem. 2011;286:2111–20.

    Article  CAS  PubMed  Google Scholar 

  57. Faour WH, Alaaeddine N, Mancini A, He QW, Jovanovic D, Di Battista JA. Early growth response factor-1 mediates prostaglandin E2-dependent transcriptional suppression of cytokine-induced tumor necrosis factor-alpha gene expression in human macrophages and rheumatoid arthritis-affected synovial fibroblasts. J Biol Chem. 2005;280:9536–46.

    Article  CAS  PubMed  Google Scholar 

  58. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poorani R, Bhatt AN, Dwarakanath BS, Das UN. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol. 2016;785:116–32.

    Article  CAS  PubMed  Google Scholar 

  60. Duffin R, O’Connor RA, Crittenden S, Forster T, Yu C, Zheng X, et al. Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cellIL-22 axis. Science. 2016;351:1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015;348:aaa2340. https://doi.org/10.1126/science.aaa2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GH. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447:1007–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sasaki Y, Kamiyama S, Kamiyama A, Matsumoto K, Akatsu M, Nakatani Y, et al. Genetic-deletion of cyclooxygenase-2 downstream prostacyclin synthase suppresses inflammatory reactions but facilitates carcinogenesis, unlike deletion of microsomal prostaglandin E synthase-1. Sci Rep. 2015;5:17376. https://doi.org/10.1038/srep1737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen JH, Perry CJ, Tsui Y-C, Staron MM, Parish IA, Dominguez CX, Rosenberg DW, Kaech SM. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med. 2015;21:327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun Z, Mao A, Wang Y, Zhao Y, Chen J, Xu P, Miao C. Treatment with anti-programmed cell death 1 (PD-1) antibody restored postoperative CD8+ T cell dysfunction by surgical stress. Biomed Pharmacother. 2017;89:1235–41.

    Article  CAS  PubMed  Google Scholar 

  66. Tateishi N, Kakutani S, Kawashima H, Shibata H, Morita I. Dietary supplementation with arachidonic acid increases arachidonic acid content in paw, but does not affect arthritis severity or prostaglandin E2 content in rat adjuvant-induced arthritis model. Lipids Health Dis. 2015;14:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tateishi N, Kakutani S, Kawashima H, Shibata H, Morita I. Dietary supplementation of arachidonic acid increases arachidonic acid and lipoxin A4 contents in colon, but does not affect severity or prostaglandin E2content in murine colitis model. Lipids Health Dis. 2014;13:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kakutani S, Ishikura Y, Tateishi N, Horikawa C, Tokuda H, Kontani M, et al. Supplementation of arachidonic acid-enriched oil increases arachidonic acid contents in plasma phospholipids, but does not increase their metabolites and clinical parameters in Japanese healthy elderly individuals: a randomized controlled study. Lipids Health Dis. 2011;10:241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nassar BA, Das UN, Huang YS, Ells G, Horrobin DF. The effect of chemical hepatocarcinogenesis on liver phospholipid composition in rats fed N-6 and N-3 fatty acid-supplemented diets. Proc Soc Exp Biol Med. 1992;199:365–8.

    Article  CAS  PubMed  Google Scholar 

  70. Reitz RC, Thompson JA, Morris HP. Mitochondrial and microsomal phospholipids of Morris hepatoma 7777. Cancer Res. 1977;37:561–7.

    CAS  PubMed  Google Scholar 

  71. Chiappe LE, DeTomas ME. Mercuri 0. In vitro activity of ∆6 and ∆9 desaturases in hepatomas of different growth rates. Lipids. 1974;9:489–90.

    Article  CAS  Google Scholar 

  72. Hostetler KY, Zenner BD, Morris HP. Abnormal membrane phospholipid content in subcellular fractions from the Morris 7777 hepatoma. Biochim Biophys Acta. 1976;441:231–8.

    Article  CAS  PubMed  Google Scholar 

  73. Xing K, Gu B, Zhang P, Wu X. Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: an insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol. 2015;16:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A. 2008;105:11105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, et al. O2.- and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 2017;31:487–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reczek CR, Chandel NS. Revisiting vitamin C and cancer. Science. 2015;350:1317–8.

    Article  PubMed  Google Scholar 

  77. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015;350:1391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guerriero E, Sorice A, Capone F, Napolitano V, Colonna G, Storti G, Castello G, Costantini S. Vitamin C Effect on mitoxantrone-induced cytotoxicity in human breast cancer cell lines. PLoS One. 2014;9:e115287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Padayatty SJ, Riordan HD, Hewitt SM, , Katz A, Hoffer LJ, Levine M. Intravenously administered vitamin C as cancer therapy: three cases. Can Med Assoc J 2006;174: 937–342.

    Article  Google Scholar 

  80. Xia J, Xu H, Zhang X, Allamargot C, Coleman KL, Randy Nessler R, Frech I, Tricot G, Zhan F. Multiple myeloma tumor cells are selectively killed by pharmacologically-dosed ascorbic acid. EBioMedicine. 2017; https://doi.org/10.1016/j.ebiom.2017.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ranzato E, Biffo S, Burlando B. Selective ascorbate toxicity in malignant mesothelioma. A redox trojan mechanism. Am J Respir Cell Mol Biol. 2011;44:108–17.

    Article  CAS  PubMed  Google Scholar 

  82. Martinotti S, Ranzato E, Parodi M, Vitale M, Burlando B. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells. Toxicol Appl Pharmacol. 2014;274:35–41.

    Article  CAS  PubMed  Google Scholar 

  83. Pan J, Keffer J, Emami A, Ma X, Lan R, Goldman R, Chung FL. Acrolein-derived DNA adduct formation in human colon cancer cells: its role in apoptosis induction by docosahexaenoic acid. Chem Res Toxicol. 2009;22:798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Corps AN, Pozzan T, Hesketh TR, Metacalfe JC. cis-Unsaturated fatty acids inhibit cap formation on lymphocytes by depleting cellular ATP. J Biol Chem. 1980;255:10566–8.

    CAS  PubMed  Google Scholar 

  85. Hillered L, Chan PH. Effects of arachidonic acid on respiratory activities in isolated brain mitochondria. J Neurosci Res. 1988;19:94–100.

    Article  CAS  PubMed  Google Scholar 

  86. Madhavi N, Das UN. Effect of n-6 and n-3 fatty acids on the survival of vincristine sensitive and resistant human cervical carcinoma cells in vitro. Cancer Lett. 1994;84:31–41.

    Article  CAS  PubMed  Google Scholar 

  87. Madhavi N, Das UN. Reversal of KB-3-1 and KB-Ch-8-5 tumor cell drug-resistance by cis-unsaturated fatty acids in vitro. Med Sci Res. 1994;22:689–92.

    Google Scholar 

  88. Das UN, Madhavi N, Padma M, Sagar PS. Can tumor cell drug-resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids. 1998;58:39–54.

    Article  CAS  PubMed  Google Scholar 

  89. Ramesh G, Das UN, et al. Effect of essential fatty acids on tumor cells. Nutrition. 1992;8:343–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, Part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, U.N. (2020). PUFAs and Their Metabolites in Carcinogenesis. In: Molecular Biochemical Aspects of Cancer. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0741-1_4

Download citation

Publish with us

Policies and ethics