Skip to main content

Immune System, Inflammation, and Essential Fatty Acids and Their Metabolites in Cancer

  • Chapter
  • First Online:
Book cover Molecular Biochemical Aspects of Cancer

Abstract

Immunosurveillance of cancer is well known. It is believed that escape from the immunosurveillance system and failure of the immunocytes to mount an adequate immune response lead to cancer. These and other evidences led to the development of immune checkpoint inhibitors that have taken the oncology field by storm. Despite these advances, only a fraction of patients with cancer are benefited by immune checkpoint inhibitors. Immunocytes including macrophages seem to release ROS and toxic lipid peroxides that have selective tumoricidal action. Essential fatty acids and their metabolites have a regulatory role not only in inflammation and immune response modulation but may also mediate the cytotoxic action of immunocytes and have a significant role in mutagenesis and carcinogenesis and assist in the elimination of cancer cells by radiation and chemotherapeutic drugs. Immune checkpoint inhibitors and CAR T (chimeric antigen receptor therapy) may work by delivering toxic lipid peroxides to tumor cells. Gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid are toxic tumor cells but not to normal cells, and thus they have specific anti-cancer action that needs to be exploited in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosser EC, Oleinika K, Tonon S, Doyle R, Bosma A, Carter NA, Harris KA, Jones SA, Klein N, Mauri C. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat Med. 2014;20:1334–9.

    Article  CAS  PubMed  Google Scholar 

  2. Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29:1395–403.

    Article  CAS  PubMed  Google Scholar 

  3. Rojo D, Hevia A, Bargiela R, López P, Cuervo A, González S, et al. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep. 2015;5:8310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA, McGoldrick DJ, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516:246–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64.

    Article  CAS  PubMed  Google Scholar 

  6. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  CAS  PubMed  Google Scholar 

  8. Walker AW, Parkhill J. Fighting obesity with bacteria. Science. 2013;341:1069–70.

    Article  CAS  PubMed  Google Scholar 

  9. Das UN. Clinical laboratory tools to diagnose inflammation. Adv Clin Chem. 2006;41:189–229.

    Article  CAS  PubMed  Google Scholar 

  10. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621–67.

    Article  CAS  PubMed  Google Scholar 

  11. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  PubMed  Google Scholar 

  12. Pancer Z, Cooper MD. The evolution of adaptive immunity. Annu Rev Immunol. 2006;24:497–518.

    Article  CAS  PubMed  Google Scholar 

  13. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383:787–93.

    Article  CAS  PubMed  Google Scholar 

  14. McHeyzer-Williams LJ, Malherbe LP, McHeyzer-Williams MG. Helper T cell-regulated B cell immunity. Curr Top Microbiol Immunol. 2006;311:59–83.

    CAS  PubMed  Google Scholar 

  15. Holtmeier W, Kabelitz D. gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy. 2005;86:151–83.

    Article  CAS  PubMed  Google Scholar 

  16. Girardi M. Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol. 2006;126:25–31.

    Article  CAS  PubMed  Google Scholar 

  17. Wieczorek G, Asemissen A, Model F, Turbachova I, Floess S, Liebenberg V, et al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 2009;69:599–608.

    Article  CAS  PubMed  Google Scholar 

  18. Golding A, Hasni S, Illei G, Shevach EM. The percentage of FoxP3+Helios+ Treg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis Rheum. 2013;65:2898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lü CX, Xu RD, Cao M, Wang G, Yan FQ, Shang SS, Wu XF, Ruan L, Quan XQ, Zhang CT. FOXP3 demethylation as a means of identifying quantitative defects in regulatory T cells in acute coronary syndrome. Atherosclerosis. 2013;229:263–70.

    Article  PubMed  CAS  Google Scholar 

  20. Jeron A, Hansen W, Ewert F, Buer J, Geffers R, Bruder D. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells. BMC Genomics. 2012;13:705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  22. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  CAS  PubMed  Google Scholar 

  23. Burnet FM. Cancer—a biological approach: I. the processes of control. II. The significance of somatic mutation. Br Med J. 1957;1:779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. J Immunol. 2007;121:1–14.

    Article  CAS  Google Scholar 

  25. Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother. 2001;50:3–15.

    Article  CAS  PubMed  Google Scholar 

  26. De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald TT, Pallone F, Monteleone G, Stolfi C. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2014; https://doi.org/10.1038/onc.2014.286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Peppicelli S, Bianchini F, Calorini L. Inflammatory cytokines induce vascular endothelial growth factor-C expression in melanoma-associated macrophages and stimulate melanoma lymph node metastasis. Oncol Lett. 2014;8:1133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giordano M, Roncagalli R, Bourdely P, Chasson L, Buferne M, Yamasaki S, Beyaert R, van Loo G, Auphan-Anezin N, Schmitt-Verhulst AM, Verdeil G. The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proc Natl Acad Sci U S A. 2014;111:11115–111120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32:463–88.

    Article  CAS  PubMed  Google Scholar 

  30. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Phys. 2012;228:1404–12.

    Article  CAS  Google Scholar 

  31. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65.

    Article  CAS  PubMed  Google Scholar 

  32. Kono Y, Kawakami S, Higuchi Y, Yamashita F, Hashida M. In vitro evaluation of inhibitory effect of nuclear factor-kappaB activity by small interfering RNA on pro-tumor characteristics of M2-like macrophages. Biol Pharm Bull. 2014;37:137–44.

    Article  CAS  PubMed  Google Scholar 

  33. Boutard V, Havouis R, Fouqueray B, Philippe C, Moulinoux JP, Baud L. Transforming growth factor-beta stimulates arginase activity in macrophages. Implications for the regulation of macrophage cytotoxicity. J Immunol. 1995;155:2077–84.

    CAS  PubMed  Google Scholar 

  34. Kim JY, Lim K, Kim KH, Kim JH, Choi JS, Shim SC. N-3 polyunsaturated fatty acids restore Th17 and Treg balance in collagen antibody-induced arthritis. PLoS One. 2018;13:e0194331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bi X, Li F, Liu S, Jin Y, Zhang X, Yang T, Dai Y, Li X, Zhao AZ. ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J Clin Invest. 2017;127:1757–71.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gu M, Li Y, Tang H, Zhang C, Li W, Zhang Y, Li Y, Zhao Y, Song C. Endogenous omega (n)-3 fatty acids in Fat-1 mice attenuated depression-like bhavior, imbalance between microglial M1 and M2 phenotypes, and dysfunction of neurotrophins induced by lipopolysaccharide administration. Nutrients. 2018;10:E1351.

    Article  PubMed  CAS  Google Scholar 

  37. Samuels JS, Holland L, López M, Meyers K, Cumbie WG, McClain A, Ignatowicz A, Nelson D, Shashidharamurthy R. Prostaglandin E2 and IL-23 interconnects STAT3 and RoRγ pathways to initiate Th17 CD4+ T-cell development during rheumatoid arthritis. Inflamm Res. 2018;67:589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ueharaguchi Y, Honda T, Kusuba N, Hanakawa S, Adachi A, Sawada Y, Otsuka A, Kitoh A, Dainichi T, Egawa G, Nakashima C, Nakajima S, Murata T, Ono S, Arita M, Narumiya S, Miyachi Y, Kabashima K. Thromboxane A2 facilitates IL-17A production from Vγ4+ γδ T cells and promotes psoriatic dermatitis in mice. J Allergy Clin Immunol. 2018;142:680–3.

    Article  CAS  PubMed  Google Scholar 

  39. Kim JH, Choi YJ, Lee BH, Song MY, Ban CY, Kim J, Park J, Kim SE, Kim TG, Park SH, Kim HP, Sung YC, Kim SC, Shin EC. Programmed cell death ligand 1 alleviates psoriatic inflammation by suppressing IL-17A production from programmed cell death 1-high T cells. J Allergy Clin Immunol. 2016;137:1466–76.

    Article  CAS  PubMed  Google Scholar 

  40. Sawada Y, Honda T, Nakamizo S, Otsuka A, Ogawa N, Kobayashi Y, Nakamura M, Kabashima K. Resolvin E1 attenuates murine psoriatic dermatitis. Sci Rep. 2018;8:11873. https://doi.org/10.1038/s41598-018-30373-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang H, Zhao Q, Luo D, Yin Y, Li T, Zhao M. Resolvin E1 inhibits corneal allograft rejection in high-risk corneal transplantation. Invest Ophthalmol Vis Sci. 2018;59:3911–9.

    Article  CAS  PubMed  Google Scholar 

  42. Saito-Sasaki N, Sawada Y, Mashima E, Yamaguchi T, Ohmori S, Yoshioka H, Haruyama S, Okada E, Nakamura M. Maresin-1 suppresses imiquimod-induced skin inflammation by regulating IL-23 receptor expression. Sci Rep. 2018;8:5522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shi Q, Yin Z, Zhao B, Sun F, Yu H, Yin X, Zhang L, Wang S. PGE2 elevates IL-23 production in human dendritic cells via a cAMP dependent pathway. Mediat Inflamm. 2015;2015:984690.

    Google Scholar 

  44. Sheibanie AF, Tadmori I, Jing H, Vassiliou E, Ganea D. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J. 2004;18:1318–20.

    Article  CAS  PubMed  Google Scholar 

  45. Kalim KW, Groettrup M. Prostaglandin E2 inhibits IL-23 and IL-12 production by human monocytes through down-regulation of their common p40 subunit. Mol Immunol. 2013;53:274–82.

    Article  CAS  PubMed  Google Scholar 

  46. Qian X, Gu L, Ning H, Zhang Y, Hsueh EC, Fu M, Hu X, Wei L, Hoft DF, Liu J. Increased Th17 cells in the tumor microenvironment is mediated by IL-23 via tumor-secreted prostaglandin E2. J Immunol. 2013;190:5894–902.

    Article  CAS  PubMed  Google Scholar 

  47. Alvarez C, Amaral MM, Langellotti C, Vermeulen M. Leukotriene C(4) prevents the complete maturation of murine dendritic cells and modifies interleukin-12/interleukin-23 balance. Immunology. 2011;134:185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haworth O, Cernadas M, Yang R, Serhan CN, Levy BD. Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol. 2008;9:873–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maekawa T, Hosur K, Abe T, Kantarci A, Ziogas A, Wang B, Van Dyke TE, Chavakis T, Hajishengallis G. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3β-C/EBPβ pathway. Nat Commun. 2015;6:8272.

    Article  PubMed  CAS  Google Scholar 

  50. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8:765–72.

    Article  CAS  PubMed  Google Scholar 

  51. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8.

    Article  CAS  PubMed  Google Scholar 

  53. Seliger B, Marincola FM, Ferrone S, Abken H. The complex role of B7 molecules in tumor immunology. Trends Mol Med. 2008;14:550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61.

    Article  CAS  PubMed  Google Scholar 

  55. Ankri C, Cohen CJ. Out of the bitter came forth sweet: activating CD28-dependent co-stimulation via PD-1 ligands. Onco Targets Ther. 2014;3:e27399.

    Google Scholar 

  56. Bettelli E, Kom T, Oukka M, Kuchroo VK. Induction and effector functions of TH17 cells. Nature. 2008;453:1051–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Margarita Dominguez-Villar M, Hafler DA. An innate role for IL-17. Science. 2011;332:47–8.

    Article  PubMed  Google Scholar 

  58. Sato K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203:2673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol. 2003;171:6173–7.

    Article  CAS  PubMed  Google Scholar 

  60. Komiyama Y, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177:566–73.

    Article  CAS  PubMed  Google Scholar 

  61. Chabaud M, et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42:963–70.

    Article  CAS  PubMed  Google Scholar 

  62. Lock C, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med. 2002;8:500–8.

    Article  CAS  PubMed  Google Scholar 

  63. Fujino S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilson NJ, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8:950–7.

    Article  CAS  PubMed  Google Scholar 

  65. Kebir H, et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13:1173–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.

    Article  CAS  PubMed  Google Scholar 

  67. Bettelli E, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  CAS  PubMed  Google Scholar 

  68. Laurence A, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26:371–81.

    Article  CAS  PubMed  Google Scholar 

  69. Mucida D, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007;317:256–60.

    Article  CAS  PubMed  Google Scholar 

  70. Kleinschek MA, et al. IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med. 2007;204:161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Batten M, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol. 2006;7:929–36.

    Article  CAS  PubMed  Google Scholar 

  72. Stumhofer JS, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol. 2006;7:937–45.

    Article  CAS  PubMed  Google Scholar 

  73. Wang R, Hasnain SZ, Tong H, Das I, Che-Hao Chen A, Oancea I, Proctor M, Florin TH, Eri RD, McGuckin MA. Neutralizing IL-23 is superior to blocking IL-17 in suppressing intestinal inflammation in a spontaneous murine colitis Model. Inflamm Bowel Dis. 2015;21:973–84.

    Article  PubMed  Google Scholar 

  74. Lyson K, McCann SM. Involvement of arachidonic acid cascade pathways in interleukin-6-stimulated corticotropin-releasing factor release in vitro. Neuroendocrinology. 1992;55:708–13.

    Article  CAS  PubMed  Google Scholar 

  75. Lee IT, Lin CC, Cheng SE, Hsiao LD, Hsiao YC, Yang CM. TNF-α induces cytosolic phospholipase A2 expression in human lung epithelial cells via JNK1/2- and p38 MAPK-dependent AP-1 activation. PLoS One. 2013;8:e72783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spriggs DR, Sherman ML, Imamura K, Mohri M, Rodriguez C, Robbins G, Kufe DW. Phospholipase A2 activation and autoinduction of tumor necrosis factor gene expression by tumor necrosis factor. Cancer Res. 1990;50:7101–7.

    CAS  PubMed  Google Scholar 

  77. Jaulmes A, Thierry S, Janvier B, Raymondjean M, Maréchal V. Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta. FASEB J. 2006;20:1727–9.

    Article  CAS  PubMed  Google Scholar 

  78. Leslie CC. Cytosolic phospholipase A2: physiological function and role in disease. J Lipid Res. 2015;56:1386–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bai M, Zhang L, Fu B, Bai J, Zhang Y, Cai G, Bai X, Feng Z, Sun S, Chen X. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney Int. 2018;93:814–25.

    Article  CAS  PubMed  Google Scholar 

  80. Shoda H, Yanai R, Yoshimura T, Nagai T, Kimura K, Sobrin L, Connor KM, Sakoda Y, Tamada K, Ikeda T, Sonoda KH. Dietary Omega-3 fatty acids suppress experimental autoimmune uveitis in association with inhibition of Th1 and Th17 cell function. PLoS One. 2015;10:e0138241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Xu J, Duan X, Hu F, Poorun D, Liu X, Wang X, Zhang S, Gan L, He M, Zhu K, Ming Z, Chen H. Resolvin D1 attenuates imiquimod-induced mice psoriasiform dermatitis through MAPKs and NF-κB pathways. J Dermatol Sci. 2018;89:127–35.

    Article  CAS  PubMed  Google Scholar 

  82. Rumzhum NN, Patel BS, Prabhala P, Gelissen IC, Oliver BG, Ammit AJ. IL-17A increases TNF-α-induced COX-2 protein stability and augments PGE2 secretion from airway smooth muscle cells: impact on β2 -adrenergic receptor desensitization. Allergy. 2016;71:387–96.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang F, Koyama Y, Sanuki R, Mitsui N, Suzuki N, Kimura A, Nakajima A, Shimizu N, Maeno M. IL-17A stimulates the expression of inflammatory cytokines via celecoxib-blocked prostaglandin in MC3T3-E1 cells. Arch Oral Biol. 2010;55:679–88.

    Article  CAS  PubMed  Google Scholar 

  84. Tokuda H, Kozawa O, Uematsu T. Interleukin (IL)-17 enhances prostaglandin F(2 alpha)-stimulated IL-6 synthesis in osteoblasts. Prostaglandins Leukot Essent Fatty Acids. 2002;66:427–33.

    Article  CAS  PubMed  Google Scholar 

  85. Changchun K, Pengchao H, Ke S, Ying W, Lei W. Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett. 2017;13:3253–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Henness S, Johnson CK, Ge Q, Armour CL, Hughes JM, Ammit AJ. IL-17A augments TNF-alpha-induced IL-6 expression in airway smooth muscle by enhancing mRNA stability. J Allergy Clin Immunol. 2004;114:958–64.

    Article  CAS  PubMed  Google Scholar 

  87. Naveen KVG, Naidu VGM, Das UN. Arachidonic acid and lipoxin A4 attenuate streptozotocin-induced cytotoxicity to RIN5F cells in vitro and type 1 and type 2 diabetes mellitus in vivo. Nutrition. 2017;35:61–80.

    Article  CAS  Google Scholar 

  88. Hao W, Wong OY, Liu X, Lee P, Chen Y, Wong KK. ω-3 fatty acids suppress inflammatory cytokine production by macrophages and hepatocytes. J Pediatr Surg. 2010;45:2412–8.

    Article  PubMed  Google Scholar 

  89. Suzuki M, Noda K, Kubota S, Hirasawa M, Ozawa Y, Tsubota K, Mizuki N, Ishida S. Eicosapentaenoic acid suppresses ocular inflammation in endotoxin-induced uveitis. Mol Vis. 2010;16:1382–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Weylandt KH, Krause LF, Gomolka B, Chiu CY, Bilal S, Nadolny A, Waechter SF, Fischer A, Rothe M, Kang JX. Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α. Carcinogenesis. 2011;32:897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Das UN. Is there a role for bioactive lipids in the pathobiology of diabetes mellitus? Front Endocrinol (Lausanne). 2017;8:182.

    Article  Google Scholar 

  92. Dooper MM, van Riel B, Graus YM, M’Rabet L. Dihomo-gamma-linolenic acid inhibits tumour necrosis factor-alpha production by human leucocytes independently of cyclooxygenase activity. Immunology. 2003;110:348–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature. 2006;440:1054–9.

    Article  CAS  PubMed  Google Scholar 

  94. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC. Control of synaptic strength by glial TNFα. Science. 2002;295:2282–5.

    Article  CAS  PubMed  Google Scholar 

  95. Ribeira M, Brigas HC, Temido-Ferreira M, Pousinha PA, Regen T, Santa C, Coelho JE, Marques-Morgado I, Valente CA, Omenetti S, Stockinger B, Waisman A, Manadas B, Lopes LV, Silva-Santos B, Ribot JC. Meningeal γδ T cell–derived IL-17 controls synaptic plasticity and short-term memory. Sci Immunol. 2019;4:eaay5199.

    Article  CAS  Google Scholar 

  96. Darios F, Davletov B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature. 2006;440:813–7.

    Article  CAS  PubMed  Google Scholar 

  97. Gódor-Kacsándi A, Felszeghy K, Ranky M, Luiten PGM, Cs N. Developmental docosahexaenoic and arachidonic acid supplementation improves adult learning and increases resistance against excitotoxicity in the brain. Acta Physiol Hung. 2013;100L:186–96.

    Article  CAS  Google Scholar 

  98. Pongrac JL, Slack PJ, Innis SM. Dietary polyunsaturated fat that is low in (n-3) and high in (n-6) fatty acids alters the SNARE protein complex and nitrosylation in rat hippocampus. J Nutr. 2007;137:1852–6.

    Article  CAS  PubMed  Google Scholar 

  99. Siresha B, Das UN. PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo. Lipids Health Dis. 2019;18(1):214.

    Article  CAS  Google Scholar 

  100. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gangemi S, Luciotti G, D’Urbano E, Mallamace A, Santoro D, Bellinghieri G, Davi G, Romano M. Physical exercise increases urinary excretion of lipoxin A4 and related compounds. J Appl Physiol (1985). 2003;94:2237–40.

    Article  CAS  Google Scholar 

  102. Luo CL, Li QQ, Chen XP, Zhang XM, Li LL, Li BX, Zhao ZQ, Tao LY. Lipoxin A4 attenuates brain damage and downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res. 2013;1502:1–10.

    Article  CAS  PubMed  Google Scholar 

  103. Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC, Cordero-Morales JF, Vásquez V. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun. 2019;10:1200. https://doi.org/10.1038/s41467-019-09055-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Accardi A. Lipids link ion channels and cancer. Science. 2015;349:789–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rao VR, Perez-Neut M, Kaja S, Gentile S. Voltage-gated ion channels in cancer cell proliferation. Cancers. 2015;7:849–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mochizuki-Oda N, Mori K, Negishi M, Ito S. Prostaglandin E2 activates Ca2+ channels in bovine adrenal chromaffin cells. J Neurochem. 1991;56:541–7.

    Article  CAS  PubMed  Google Scholar 

  107. Ge S, Hertel B, Susnik N, Rong S, Dittrich AM, Schmitt R, Haller H, von Vietinghoff S. Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo. PLoS One. 2014;9:e85461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zheng L, Chu J, Shi Y, Zhou X, Tan L, Li Q, Cui L, Han Z, Han Y, Fan D. Bone marrow-derived stem cells ameliorate hepatic fibrosis by down-regulating interleukin-17. Cell Biosci. 2013;3:46.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Österreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143:765–776.e3.

    Article  CAS  PubMed  Google Scholar 

  110. Valente AJ, Yoshida T, Gardner JD, Somanna N, Delafontaine P, Chandrasekar B. Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal. 2012;24:560–8.

    Article  CAS  PubMed  Google Scholar 

  111. Yoshizaki A, Yanaba K, Ogawa A, Asano Y, Kadono T, Sato S. Immunization with DNA topoisomerase I and Freund’s complete adjuvant induces skin and lung fibrosis and autoimmunity via interleukin-6 signaling. Arthritis Rheum. 2011;63:3575–85.

    Article  CAS  PubMed  Google Scholar 

  112. Zhao L, Tang Y, You Z, Wang Q, Liang S, Han X, Qiu D, Wei J, Liu Y, Shen L, Chen X, Peng Y, Li Z, Ma X. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS One. 2011;6:e18909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Basha HI, Subramanian V, Seetharam A, Nath DS, Ramachandran S, Anderson CD, Shenoy S, Chapman WC, Crippin JS, Mohanakumar T. Characterization of HCV-specific CD4+Th17 immunity in recurrent hepatitis C-induced liver allograft fibrosis. Am J Transplant. 2011;11:775–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Feng W, Li W, Liu W, Wang F, Li Y, Yan W. IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol. 2009;87:212–8.

    Article  CAS  PubMed  Google Scholar 

  115. Sommerfeld SD, Cherry C, Schwab RM, Chung L, Maestas DR Jr, Laffont P, Stein JE, Tam A, Ganguly S, Housseau F, Taube JM, Pardoll DM, Cahan P, Elisseeff JH. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci Immunol. 2019;4:eaax4783. https://doi.org/10.1126/sciimmunol.aax4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Amara S, Lopez K, Banan B, Brown SK, Whalen M, Myles E, Ivy MT, Johnson T, Schey KL, Tiriveedhi V. Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin mediated collagen deposition: potential role in liver fibrosis. Mol Immunol. 2015;64:26–35.

    Article  CAS  PubMed  Google Scholar 

  117. Kurtoğlu EL, Kayhan B, Gül M, Kayhan B, Akdoğan Kayhan M, Karaca ZM, Yeşilada E, Yılmaz S. A bioactive product lipoxin A4 attenuates liver fibrosis in an experimental model by regulating immune response and modulating the expression of regeneration genes. Turk J Gastroenterol. 2019;30:745–57.

    Article  PubMed  Google Scholar 

  118. Bai Y, Wang J, He Z, Yang M, Li L, Jiang H. Mesenchymal stem cells reverse diabetic nephropathy disease via lipoxin A4 by targeting transforming growth factor β (TGF-β)/smad pathway and pro-inflammatory cytokines. Med Sci Monit. 2019;25:3069–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang Y, Hu L, Xia H, Chen L, Cui S, Wang Y, Zhou T, Xiong W, Song L, Li S, Pan S, Xu J, Liu M, Xiao H, Qin L, Shang Y, Yao S. Resolvin D1 attenuates mechanical stretch-induced pulmonary fibrosis via epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2019;316:L1013–24.

    Article  CAS  PubMed  Google Scholar 

  120. Zheng S, D’Souza VK, Bartis D, Dancer RC, Parekh D, Naidu B, Gao-Smith F, Wang Q, Jin S, Lian Q, Thickett DR. Lipoxin A4 promotes lung epithelial repair whilst inhibiting fibroblast proliferation. ERJ Open Res. 2016;2(3):00079-2015. eCollection 2016 Jul.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yatomi M, Hisada T, Ishizuka T, Koga Y, Ono A, Kamide Y, Seki K, Aoki-Saito H, Tsurumaki H, Sunaga N, Kaira K, Dobashi K, Yamada M, Okajima F. 17(R)-resolvin D1 ameliorates bleomycin-induced pulmonary fibrosis in mice. Physiol Rep. 2015;3:e12628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Herrera BS, Kantarci A, Zarrough A, Hasturk H, Leung KP, Van Dyke TE. LXA4 actions direct fibroblast function and wound closure. Biochem Biophys Res Commun. 2015;464:1072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Perciani CT, MacParland SA. Lifting the veil on macrophage diversity in tissue regeneration and fibrosis. Sci Immunol. 2019;4:eaaz0749.

    Article  CAS  PubMed  Google Scholar 

  124. Borbiro I, Badheka D, Rohacs T. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci Signal. 2015;8:ra15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Havemose-Poulsen A, Sørensen LK, Stoltze K, Bendtzen K, Holmstrup P. Cytokine profiles in peripheral blood and whole blood cell cultures associated with aggressive periodontitis, juvenile idiopathic arthritis, and rheumatoid arthritis. J Periodontol. 2005;76:2276–85.

    Article  CAS  PubMed  Google Scholar 

  126. Guimarães PM, Scavuzzi BM, Stadtlober NP, Franchi Santos LFDR, Lozovoy MAB, Iriyoda TMV, Costa NT, Reiche EMV, Maes M, Dichi I, Simão ANC. Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles. Immunol Cell Biol. 2017;95:824–31.

    Article  PubMed  CAS  Google Scholar 

  127. Yoshida T, Ichikawa Y, Tojo T, Homma M. Abnormal prostanoid metabolism in lupus nephritis and the effects of a thromboxane A2 synthetase inhibitor, DP-1904. Lupus. 1996;5:129–38.

    Article  CAS  PubMed  Google Scholar 

  128. Navarro E, Esteve M, Olivé A, Klaassen J, Cabré E, Tena X, Fernández-Bañares F, Pastor C, Gassull MA. Abnormal fatty acid pattern in rheumatoid arthritis. A rationale for treatment with marine and botanical lipids. J Rheumatol. 2000;27:298–303.

    CAS  PubMed  Google Scholar 

  129. Suryaprabha P, Das UN, Ramesh G, Kumar KV, Kumar GS. Reactive oxygen species, lipid peroxides and essential fatty acids in patients with rheumatoid arthritis and systemic lupus erythematosus. Prostaglandins Leukot Essent Fatty Acids. 1991;43:251–5.

    Article  CAS  PubMed  Google Scholar 

  130. Mohan IK, Das UN. Oxidant stress, anti-oxidants and essential fatty acids in systemic lupus erythematosus. Prostaglandins Leukot Essent Fatty Acids. 1997;56:193–8.

    Article  CAS  PubMed  Google Scholar 

  131. Horrobin DF. Low prevalences of coronary heart disease (CHD), psoriasis, asthma and rheumatoid arthritis in Eskimos: are they caused by high dietary intake of eicosapentaenoic acid (EPA), a genetic variation of essential fatty acid (EFA) metabolism or a combination of both? Med Hypotheses. 1987;22:421–8.

    Article  CAS  PubMed  Google Scholar 

  132. Horrobin DF. Essential fatty acid metabolism in diseases of connective tissue with special reference to scleroderma and to Sjogren’s syndrome. Med Hypotheses. 1984;14:233–47.

    Article  CAS  PubMed  Google Scholar 

  133. Laitinen O, Seppalä E, Nissilä M, Vapaatalo H. Plasma levels and urinary excretion of prostaglandins in patients with rheumatoid arthritis. Clin Rheumatol. 1983;2:401–6.

    Article  CAS  PubMed  Google Scholar 

  134. Trang LE, Granström E, Lövgren O. Levels of prostaglandins F2 alpha and E2 and thromboxane B2 in joint fluid in rheumatoid arthritis. Scand J Rheumatol. 1977;6:151–4.

    Article  CAS  PubMed  Google Scholar 

  135. Egg D. Concentrations of prostaglandins D2, E2, F2 alpha, 6-keto-F1 alpha and thromboxane B2 in synovial fluid from patients with inflammatory joint disorders and osteoarthritis. Z Rheumatol. 1984;43:89–96.

    CAS  PubMed  Google Scholar 

  136. Egg D, Günther R, Herold M, Kerschbaumer F. Prostaglandins E2 and F2 alpha concentrations in the synovial fluid in rheumatoid and traumatic knee joint diseases. Z Rheumatol. 1980;39:170–5.

    CAS  PubMed  Google Scholar 

  137. Das UN. Lipoxins as biomarkers of lupus and other inflammatory conditions. Lipids Health Dis. 2011;10:76. https://doi.org/10.1186/1476-511X-10-76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Das UN. Inflammatory bowel disease as a disorder of an imbalance between pro- and anti-inflammatory molecules and deficiency of resolution bioactive lipids. Lipids Health Dis. 2016;15:11. https://doi.org/10.1186/s12944-015-0165-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Das UN. Is multiple sclerosis a proresolution deficiency disorder? Nutrition. 2012;28:951–8.

    Article  CAS  PubMed  Google Scholar 

  140. Conte FP, Menezes-de-Lima O Jr, Verri WA Jr, Cunha FQ, Penido C, Henriques MG. Lipoxin A(4) attenuates zymosan-induced arthritis by modulating endothelin-1 and its effects. Br J Pharmacol. 2010;161:911–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chan MM, Moore AR. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J Immunol. 2010;184:6418–26.

    Article  CAS  PubMed  Google Scholar 

  142. Hashimoto A, Hayashi I, Murakami Y, Sato Y, Kitasato H, Matsushita R, Iizuka N, Urabe K, Itoman M, Hirohata S, Endo H. Antiinflammatory mediator lipoxin A4 and its receptor in synovitis of patients with rheumatoid arthritis. J Rheumatol. 2007;34:2144–53.

    CAS  PubMed  Google Scholar 

  143. Thomas E, Leroux JL, Blotman F, Chavis C. Conversion of endogenous arachidonic acid to 5,15-diHETE and lipoxins by polymorphonuclear cells from patients with rheumatoid arthritis. Inflamm Res. 1995;44:121–4.

    Article  CAS  PubMed  Google Scholar 

  144. Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015;348:aaa2340. https://doi.org/10.1126/science.aaa2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tateishi N, Kaneda Y, Kakutani S, Kawashima H, Shibata H, Morita I. Dietary supplementation with arachidonic acid increases arachidonic acid content in paw, but does not affect arthritis severity or prostaglandin E2 content in rat adjuvant-induced arthritis model. Lipids Health Dis. 2015;14:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Tateishi N, Kakutani S, Kawashima H, Shibata H, Morita I. Dietary supplementation of arachidonic acid increases arachidonic acid and lipoxin A4 contents in colon but does not affect severity or prostaglandin E2 content in murine colitis model. Lipids Health Dis. 2014;13:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Naveen KVG, Naidu VGM, Das UN. Arachidonic acid and lipoxin A4 attenuate alloxan-induced cytotoxicity to RIN5F cells in vitro and type 1 diabetes mellitus in vivo. Biofactors. 2017;43:251–71.

    Article  CAS  Google Scholar 

  148. Katoh T, Lakkis FG, Makita N, Badr KF. Co-regulated expression of glomerular 12/15-lipoxygenase and interleukin-4 mRNAs in rat nephrotoxic nephritis. Kidney Int. 1994;46:341–9.

    Article  CAS  PubMed  Google Scholar 

  149. Jiang C, Wang H, Xue M, Lin L, Wang J, Cai G, Shen Q. Reprograming of peripheral Foxp3+ regulatory T cell towards Th17-like cell in patients with active systemic lupus erythematosus. Clin Immunol. 2019;209:108267. https://doi.org/10.1016/j.clim.2019.108267.

    Article  CAS  PubMed  Google Scholar 

  150. Mohammadi S, Sedighi S, Memarian A. IL-17 is aberrantly overexpressed among under-treatment Systemic Lupus Erythematosus patients. Iran J Pathol. 2019;14:236–42.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Nordin F, Shaharir SS, Abdul Wahab A, Mustafar R, Abdul Gafor AH, Mohamed Said MS, Rajalingham S, Shah SA. Serum and urine interleukin-17A levels as biomarkers of disease activity in systemic lupus erythematosus. Int J Rheum Dis. 2019;22:1419–26.

    CAS  PubMed  Google Scholar 

  152. Zhang Q, Liu S, Ge D, Cunningham DM, Huang F, Ma L, Burris TP, You Z. Targeting Th17-IL-17 pathway in prevention of micro-invasive prostate cancer in a mouse model. Prostate. 2017;77:888–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang Q, Liu S, Parajuli KR, Zhang W, Zhang K, Mo Z, Liu J, Chen Z, Yang S, Wang AR, Myers L, You Z. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687–99.

    Article  CAS  PubMed  Google Scholar 

  154. Wang B, Zhao CH, Sun G, Zhang ZW, Qian BM, Zhu YF, Cai MY, Pandey S, Zhao D, Wang YW, Qiu W, Shi L. IL-17 induces the proliferation and migration of glioma cells through the activation of PI3K/Akt1/NF-κB-p65. Cancer Lett. 2019;447:93–104.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang Y, Wang ZC, Zhang ZS, Chen F. MicroRNA-155 regulates cervical cancer via inducing Th17/Treg imbalance. Eur Rev Med Pharmacol Sci. 2018;22:3719–26.

    CAS  PubMed  Google Scholar 

  156. Akbay EA, Koyama S, Liu Y, Dries R, Bufe LE, Silkes M, et al. Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J Thorac Oncol. 2017;12:1268–79.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Liu CSC, Raychaudhuri D, Paul B, Chakrabarty Y, Ghosh AR, Rahaman O, Talukdar A, Ganguly D. Piezo1 mechanosensors optimize human T cell activation. J Immunol. 2018;200:1255–60.

    Article  CAS  PubMed  Google Scholar 

  158. Chandy KG, Norton RS. Channelling potassium to fight cancer. Nature. 2016;537:497–8.

    Article  CAS  PubMed  Google Scholar 

  159. Ordway R, Walsh JV Jr, Singer JJ. Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science. 1989;244:1176–9.

    Article  CAS  PubMed  Google Scholar 

  160. Kim D, Clapham DE. Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science. 1989;244:1174–6.

    Article  CAS  PubMed  Google Scholar 

  161. Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunskit M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science. 1990;247:852–4.

    Article  CAS  PubMed  Google Scholar 

  162. Isaacs JT. Prostate cancer takes nerve. Science. 2013;341:134–5.

    Article  CAS  PubMed  Google Scholar 

  163. Hayakawa Y, Wang TC. Nerves switch on angiogenic metabolism. Science. 2017;358:305–6.

    Article  PubMed  Google Scholar 

  164. Barria A. Dangerous liaisons as tumours form synapses with neuron. Nature. 2019;573:499–501.

    Article  CAS  PubMed  Google Scholar 

  165. Walev I, Klein J, Husmann M, Valeva A, Strauch S, Wirtz H, Weichel O, Bhakdi S. Potassium regulates IL-1β processing via calcium-independent phospholipase A2. J Immunol. 2000;164:5120–4.

    Article  CAS  PubMed  Google Scholar 

  166. Walev I, Reskel K, Palmer M, Valeva A, Bhakdi S. Potassium-inhibited processing of IL-1β in human monocytes. EMBO J. 1995;14:1607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem. 1997;272:30567–76.

    Article  CAS  PubMed  Google Scholar 

  168. Das UN. Molecular basis of health and disease. New York: Springer; 2011.

    Book  Google Scholar 

  169. Das UN, Padma MC. Prostaglandins in lymphocyte transformation. J Assoc Physicians India. 1978;26:503–6.

    CAS  PubMed  Google Scholar 

  170. Das UN. Prostaglandins and immune response in cancer. Int J Tiss Reac. 1980;2:233–6.

    Google Scholar 

  171. Das UN. Inhibition of sensitized lymphocyte response to sperm antigen(s) by prostaglandins. IRCS Med Sci. 1981;9:1087.

    CAS  Google Scholar 

  172. Kumar SG, Das UN, Kumar KV, Madhavi DNP, Tan BKH. Effect of n-6 and n-3 fatty acids on the proliferation and secretion of TNF and IL-2 by human lymphocytes in vitro. Nutr Res. 1992;12:815–23.

    Article  CAS  Google Scholar 

  173. Kumar SG, Das UN. Effect of prostaglandins and their precursors on the proliferation of human lymphocytes and their secretion of tumor necrosis factor and various interleukins. Prostaglandins Leukot Essent Fatty Acids. 1994;50:331–4.

    Article  CAS  PubMed  Google Scholar 

  174. Das UN. HLA-DR expression, cytokines and bioactive lipids in sepsis. Arch Med Sci. 2014;10(2):325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Narumiya S. Physiology and pathophysiology of prostanoid receptors. Proc Jpn Acad Ser B. 2007;83:296–319.

    Article  CAS  Google Scholar 

  176. Goodwin JS, Ceuppens J. Regulation of the immune response by prostaglandins. J Clin Immunol. 1983;3:295–315.

    Article  CAS  PubMed  Google Scholar 

  177. Betz M, Fox BS. Prostaglandin E2 inhibits production of TH1 lymphokines but not of Th2 lymphokines. J Immunol. 1991;146:108–13.

    CAS  PubMed  Google Scholar 

  178. Gold KN, Weyand CM, Goronzy JJ. Modulation of helper T cell function by prostaglandins. Arthritis Rheum. 1994;37:925–33.

    Article  CAS  PubMed  Google Scholar 

  179. Hilkens CM, et al. Differential modulation of T helper type 1 (TH1) and T helper type 2 (TH2) cytokine secretion by prostaglandin E2 critically depends on interleukin-2. Eur J Immunol. 1995;25:59–63.

    Article  CAS  PubMed  Google Scholar 

  180. Yao C, Sakata D, Esaki Y, et al. Prostaglandin E2–EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nat Med. 2009;15:633–40.

    Article  CAS  PubMed  Google Scholar 

  181. Kabashima K, et al. Prostaglandin E2–EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat Med. 2003;9:744–9.

    Article  CAS  PubMed  Google Scholar 

  182. Herve M, et al. Pivotal roles of the parasite PGD2 synthase and of the host D prostanoid receptor 1 in schistosome immune evasion. Eur J Immunol. 2003;33:2764–72.

    Article  CAS  PubMed  Google Scholar 

  183. Kabashima K, et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol. 2003;4:694–701.

    Article  CAS  PubMed  Google Scholar 

  184. Chizzolini C, et al. Prostaglandin E2 synergistically with interleukin-23 favors human TH17 expansion. Blood. 2008;112:3696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Boniface K, et al. Prostaglandin E2 regulates TH17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med. 2009;206:535–48.

    Article  CAS  PubMed  Google Scholar 

  186. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol. 2002;23:144–50.

    Article  CAS  PubMed  Google Scholar 

  187. Kalinski P. Regulation of immune responses by prostaglandin e2. J Immunol. 2012;188:21–8.

    Article  CAS  PubMed  Google Scholar 

  188. Linnemeyer PA, Pollack SB. Prostaglandin E2-induced changes in the phenotype, morphology, and lytic activity of IL-2-activated natural killer cells. J Immunol. 1993;150:3747–54.

    CAS  PubMed  Google Scholar 

  189. Sreeramkumar V, Fresno M, Cuesta N. Prostaglandin E2 and T cells: friends or foes? Immunol Cell Biol. 2012;90:579–86.

    Article  CAS  PubMed  Google Scholar 

  190. Strassmann G, Patil-Koota V, Finkelman F, Fong M, Kambayashi T. Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J Exp Med. 1994;180:2365–70.

    Article  CAS  PubMed  Google Scholar 

  191. Demeure CE, Yang LP, Desjardins C, Raynauld P, Delespesse G. Prostaglandin E2 primes naive T cells for the production of anti-inflammatory cytokines. Eur J Immunol. 1997;27:3526–31.

    Article  CAS  PubMed  Google Scholar 

  192. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rahmouni S, et al. Cyclo-oxygenase type 2-dependent prostaglandin E2 secretion is involved in retrovirus-induced T-cell dysfunction in mice. Biochem J. 2004;384:469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Owen K, Gomolka D, Droller MJ. Production of prostaglandin E2 by tumor cells in vitro. Cancer Res. 1980;40:3167–71.

    CAS  PubMed  Google Scholar 

  195. Young MR, Knies S. Prostaglandin E production by Lewis lung carcinoma: mechanism for tumor establishment in vivo. J Natl Cancer Inst. 1984;72:919–22.

    CAS  PubMed  Google Scholar 

  196. Balch CM, Dougherty PA, Cloud GA, Tilden AB. Prostaglandin E2-mediated suppression of cellular immunity in colon cancer patients. Surgery. 1984;95:71–7.

    CAS  PubMed  Google Scholar 

  197. Murray JL, Kollmorgen GM. Inhibition of lymphocyte response by prostaglandin-producing suppressor cells in patients with melanoma. J Clin Immunol. 1983;3:268–76.

    Article  CAS  PubMed  Google Scholar 

  198. Passwell J, Levanon M, Davidsohn J, Ramot B. Monocyte PGE2 secretion in Hodgkin’s disease and its relation to decreased cellular immunity. Clin Exp Immunol. 1983;51:61–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Chiabrando C, Broggini M, Castagnoli MN, Donelli MG, Noseda A, Visintainer M, Garattini S, Fanelli R. Prostaglandin and thromboxane synthesis by Lewis lung carcinoma during growth. Cancer Res. 1985;45:3605–8.

    CAS  PubMed  Google Scholar 

  200. McLemore TL, Hubbard WC, Litterst CL, Liu MC, Miller S, McMahon NA, Eggleston JC, Boyd MR. Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Res. 1988;48:3140–247.

    CAS  PubMed  Google Scholar 

  201. Fulton AM. Inhibition of experimental metastasis with indomethacin: role of macrophages and natural killer cells. Prostaglandins. 1988;35:413–25.

    Article  CAS  PubMed  Google Scholar 

  202. Maxwell WJ, Kelleher D, Keating JJ, Hogan FP, Bloomfield FJ, MacDonald GS, Keeling PW. Enhanced secretion of prostaglandin E2 by tissue-fixed macrophages in colonic carcinoma. Digestion. 1990;47:160–6.

    Article  CAS  PubMed  Google Scholar 

  203. Baxevanis CN, Reclos GJ, Gritzapis AD, Dedousis GV, Missitzis I, Papamichail M. Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer. Cancer. 1993;72:491–501.

    Article  CAS  PubMed  Google Scholar 

  204. Alleva DG, Burger CJ, Elgert KD. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J Immunol. 1994;153:1674–86.

    CAS  PubMed  Google Scholar 

  205. Liu XH, Connolly JM, Rose DP. Eicosanoids as mediators of linoleic acid-stimulated invasion and type IV collagenase production by a metastatic human breast cancer cell line. Clin Exp Metastasis. 1996;14:145–52.

    Article  CAS  PubMed  Google Scholar 

  206. Li S, Xu X, Jiang M, Bi Y, Xu J, Han M. Lipopolysaccharide induces inflammation and facilitates lung metastasis in a breast cancer model via the prostaglandin E2-EP2 pathway. Mol Med Rep. 2015;11:4454–62.

    Article  CAS  PubMed  Google Scholar 

  207. Kim MJ, Kim HS, Lee SH, Yang Y, Lee MS, Lim JS. NDRG2 controls COX-2/PGE2-mediated breast cancer cell migration and invasion. Mol Cells. 2014;37:759–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Zhang M, Zhang H, Cheng S, Zhang D, Xu Y, Bai X, Xia S, Zhang L, Ma J, Du M, Wang Y, Wang J, Chen M, Leng J. Prostaglandin E2 accelerates invasion by upregulating snail in hepatocellular carcinoma cells. Tumour Biol. 2014;35:7135–45.

    Article  CAS  PubMed  Google Scholar 

  209. Han C, Michalopoulos GK, Wu T. Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol. 2006;207:261–70.

    Article  CAS  PubMed  Google Scholar 

  210. Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem. 2005;280:24053–63.

    Article  CAS  PubMed  Google Scholar 

  211. Xu L, Han C, Wu T. A novel positive feedback loop between peroxisome proliferator-activated receptor-delta and prostaglandin E2 signaling pathways for human cholangiocarcinoma cell growth. J Biol Chem. 2006;281:33982–96.

    Article  CAS  PubMed  Google Scholar 

  212. Misra UK, Pizzo SV. Evidence for a pro-proliferative feedback loop in prostate cancer: the role of Epac1 and COX-2-dependent pathways. PLoS One. 2013;8:e63150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Evans DB, Thavarajah M, Kanis JA. Involvement of prostaglandin E2 in the inhibition of osteocalcin synthesis by human osteoblast-like cells in response to cytokines and systemic hormones. Biochem Biophys Res Commun. 1990;167:194–202.

    Article  CAS  PubMed  Google Scholar 

  214. Hori T, Yamanaka Y, Hayakawa M, Shibamoto S, Tsujimoto M, Oku N, Ito F. Prostaglandins antagonize fibroblast proliferation stimulated by tumor necrosis factor. Biochem Biophys Res Commun. 1991;174:758–66.

    Article  CAS  PubMed  Google Scholar 

  215. Kambayashi T, Alexander HR, Fong M, Strassmann G. Potential involvement of IL-10 in suppressing tumor-associated macrophages. Colon-26-derived prostaglandin E2 inhibits TNF-alpha release via a mechanism involving IL-10. J Immunol. 1995;154:3383–90.

    CAS  PubMed  Google Scholar 

  216. Takigawa M, Takashiba S, Takahashi K, Arai H, Kurihara H, Murayama Y. Prostaglandin E2 inhibits interleukin-6 release but not its transcription in human gingival fibroblasts stimulated with interleukin-1 beta or tumor necrosis factor-alpha. J Periodontol. 1994;65:1122–7.

    Article  CAS  PubMed  Google Scholar 

  217. Fieren MW, van den Bemd GJ, Ben-Efraim S, Bonta IL. Prostaglandin E2 inhibits the release of tumor necrosis factor-alpha, rather than interleukin 1 beta, from human macrophages. Immunol Lett. 1992;31:85–90.

    Article  CAS  PubMed  Google Scholar 

  218. Vassiliou E, Jing H, Ganea D. Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cell Immunol. 2003;223:120–32.

    Article  CAS  PubMed  Google Scholar 

  219. Stafford JB, Marnett LJ. Prostaglandin E2 inhibits tumor necrosis factor-alpha RNA through PKA type I. Biochem Biophys Res Commun. 2008;366:104–9.

    Article  CAS  PubMed  Google Scholar 

  220. Xu XJ, Reichner JS, Mastrofrancesco B, Henry WL Jr, Albina JE. Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-beta production. J Immunol. 2008;180:2125–31.

    Article  CAS  PubMed  Google Scholar 

  221. Huang CN, Liu KL, Cheng CH, Lin YS, Lin MJ, Lin TH. PGE2 enhances cytokine-elicited nitric oxide production in mouse cortical collecting duct cells. Nitric Oxide. 2005;12:150–8.

    Article  CAS  PubMed  Google Scholar 

  222. Gaillard T, Mülsch A, Klein H, Decker K. Regulation by prostaglandin E2 of cytokine-elicited nitric oxide synthesis in rat liver macrophages. Biol Chem Hoppe Seyler. 1992;373:897–902.

    Article  CAS  PubMed  Google Scholar 

  223. Stadler J, Harbrecht BG, Di Silvio M, Curran RD, Jordan ML, Simmons RL, Billiar TR. Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol. 1993;53:165–72.

    Article  CAS  PubMed  Google Scholar 

  224. Tetsuka T, Daphna-Iken D, Miller BW, Guan Z, Baier LD, Morrison AR. Nitric oxide amplifies interleukin 1-induced cyclooxygenase-2 expression in rat mesangial cells. J Clin Invest. 1996;97:2051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wilson KT, Vaandrager AB, De Vente J, Musch MW, De Jonge HR, Chang EB. Production and localization of cGMP and PGE2 in nitroprusside-stimulated rat colonic ion transport. Am J Phys. 1996;270(3 Pt 1):C832–40.

    Article  CAS  Google Scholar 

  226. Sautebin L, Ialenti A, Ianaro A, Di Rosa M. Endogenous nitric oxide increases prostaglandin biosynthesis in carrageenin rat paw oedema. Eur J Pharmacol. 1995;286:219–22.

    Article  CAS  PubMed  Google Scholar 

  227. Biondi C, Fiorini S, Pavan B, Ferretti ME, Barion P, Vesce F. Interactions between the nitric oxide and prostaglandin E2 biosynthetic pathways in human amnion-like WISH cells. J Reprod Immunol. 2003;60:35–52.

    Article  CAS  PubMed  Google Scholar 

  228. Du Y, Sarthy VP, Kern TS. Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Physiol Regul Integr Comp Physiol. 2004;287:R735–41.

    Article  CAS  PubMed  Google Scholar 

  229. Chien CC, Shen SC, Yang LY, Chen YC. Prostaglandins as negative regulators against lipopolysaccharide, lipoteichoic acid, and peptidoglycan-induced inducible nitric oxide synthase/nitric oxide production through reactive oxygen species-dependent heme oxygenase 1 expression in macrophages. Shock. 2012;38:549–58.

    Article  CAS  PubMed  Google Scholar 

  230. Stæhr M, Hansen PB, Madsen K, Vanhoutte PM, Nüsing RM, Jensen BL. Deletion of cyclooxygenase-2 in the mouse increases arterial blood pressure with no impairment in renal NO production in response to chronic high salt intake. Am J Physiol Regul Integr Comp Physiol. 2013;304:R899–907.

    Article  PubMed  CAS  Google Scholar 

  231. Harizi H, Norbert G. Inhibition of IL-6, TNF-alpha, and cyclooxygenase-2 protein expression by prostaglandin E2-induced IL-10 in bone marrow-derived dendritic cells. Cell Immunol. 2004;228:99–109.

    Article  PubMed  CAS  Google Scholar 

  232. Harizi H, Juzan M, Pitard V, Moreau JF, Gualde N. Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol. 2002;168:2255–63.

    Article  CAS  PubMed  Google Scholar 

  233. Kanda N, Koike S, Watanabe S. IL-17 suppresses TNF-alpha-induced CCL27 production through induction of COX-2 in human keratinocytes. J Allergy Clin Immunol. 2005;116:1144–50.

    Article  CAS  PubMed  Google Scholar 

  234. Khayrullina T, Yen JH, Jing H, Ganea D. In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. J Immunol. 2008;181:721–35.

    Article  CAS  PubMed  Google Scholar 

  235. Chen H, Qin J, Wei P, Zhang J, Li Q, Fu L, Li S, Ma C, Cong B. Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+ T regulatory cells and Th17 cells. Prostaglandins Leukot Essent Fatty Acids. 2009;80:195–200.

    Article  CAS  PubMed  Google Scholar 

  236. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993;90:7240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Swierkosz TA, Mitchell JA, Warner TD, Botting RM, Vane JR. Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol. 1995;114:1335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Mollace V, Colasanti M, Muscoli C, Lauro GM, Iannone M, Rotiroti D, Nistico G. The effect of nitric oxide on cytokine-induced release of PGE2 by human cultured astroglial cells. Br J Pharmacol. 1998;124:742–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Marcinkiewicz J. Regulation of cytokine production by eicosanoids and nitric oxide. Arch Immunol Ther Exp. 1997;45:163–7.

    CAS  Google Scholar 

  240. Tanaka M, Ishibashi H, Hirata Y, Miki K, Kudo J, Niho Y. Tumor necrosis factor production by rat Kupffer cells-regulation by lipopolysaccharide, macrophage activating factor and prostaglandin E2. J Clin Lab Immunol. 1996;48:17–31.

    CAS  PubMed  Google Scholar 

  241. Liu XH, Kirschenbaum A, Lu M, Yao S, Klausner A, Preston C, Holland JF, Levine AC. Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem Biophys Res Commun. 2002;290:249–55.

    Article  CAS  PubMed  Google Scholar 

  242. Reznikov LL, Kim SH, Westcott JY, Frishman J, Fantuzzi G, Novick D, Rubinstein M, Dinarello CA. IL-18 binding protein increases spontaneous and IL-1-induced prostaglandin production via inhibition of IFN-gamma. Proc Natl Acad Sci U S A. 2000;97:2174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Perkins DJ, Kniss DA. Blockade of nitric oxide formation down-regulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol. 1999;65:792–9.

    Article  CAS  PubMed  Google Scholar 

  244. Sakurai T, Tamura K, Kogo H. Vascular endothelial growth factor increases messenger RNAs encoding cyclooxygenase-II and membrane-associated prostaglandin E synthase in rat luteal cells. J Endocrinol. 2004;183:527–33.

    Article  CAS  PubMed  Google Scholar 

  245. Yao M, Kargman S, Lam EC, Kelly CR, Zheng Y, Luk P, Kwong E, Evans JF, Wolfe MM. Inhibition of cyclooxygenase-2 by rofecoxib attenuates the growth and metastatic potential of colorectal carcinoma in mice. Cancer Res. 2003;63:586–92.

    CAS  PubMed  Google Scholar 

  246. Sailaja P, Mani AM, Naveen KVG, Anasuya DH, Siresha B, Das UN. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro. PLoS One. 2014;9:e114766.

    Article  CAS  Google Scholar 

  247. Santoro MG, Crisari A, Benedetto A, Amici C. Modulation of the growth of a human erythroleukemic cell line (K562) by prostaglandins: antiproliferative action of prostaglandin A. Cancer Res. 1986;46(12 Pt 1):6073–7.

    CAS  PubMed  Google Scholar 

  248. de Bittencourt PI Jr, Miyasaka CK, Curi R, Williams JF. Effects of the antiproliferative cyclopentenone prostaglandin A1 on glutathione metabolism in human cancer cells in culture. Biochem Mol Biol Int. 1998;45:1255–64.

    PubMed  Google Scholar 

  249. Sakai T, Yamaguchi N, Shiroko Y, Sekiguchi M, Fujii G, Nishino H. Prostaglandin D2 inhibits the proliferation of human malignant tumor cells. Prostaglandins. 1984;27:17–26.

    Article  CAS  PubMed  Google Scholar 

  250. Booyens J, Englebrecht P, Le Roux S, Louwrens CC, Van der Merwe CF, Katzeff IE. Some effects of the essential fatty acids linoleic acid, alpha-linolenic acid, and of their metabolites gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid and of prostaglandins A and E on the proliferation of human osteogenic sarcoma cells in culture. Prostaglandins Leukot Med. 1984;15:15–33.

    Article  CAS  PubMed  Google Scholar 

  251. Begin ME, Das UN, Ells G, Horrobin DF. Selective killing of human cancer cells by polyunsaturated fatty acids. Prostaglandins Leukot Med. 1985;19:177–86.

    Article  CAS  PubMed  Google Scholar 

  252. Begin ME, Ells G, Das UN, Horrobin DF. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst. 1986;77:1053–62.

    CAS  PubMed  Google Scholar 

  253. Das UN. Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Lett. 1991;56:235–43.

    Article  CAS  PubMed  Google Scholar 

  254. Sagar PS, Das UN, Koratkar R, Ramesh G, Padma M, Kumar GS. Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells: relationship to free radicals and lipid peroxidation and its modulation by calmodulin antagonists. Cancer Lett. 1992;63:189–98.

    Article  CAS  PubMed  Google Scholar 

  255. Kumar GS, Das UN. Free radical-dependent suppression of growth of mouse myeloma cells by α-linolenic and eicosapentaenoic acids in vitro. Cancer Lett. 1995;92:27–38.

    Article  CAS  PubMed  Google Scholar 

  256. Padma M, Das UN. Effect of cis-unsaturated fatty acids on cellular oxidant stress in macrophage tumor (AK-5) cells in vitro. Cancer Lett. 1996;109:63–75.

    Article  CAS  PubMed  Google Scholar 

  257. Seigel I, Liu TL, Yaghoubzadeh E, Kaskey TS, Gleicher N. Cytotoxic effects of free fatty acids on ascites tumor cells. J Natl Cancer Inst. 1987;78:271–7.

    Google Scholar 

  258. Tolnai S, Morgan JF. Studies on the in vitro anti-tumor activity of fatty acids. V. Unsaturated fatty acids. Can J Biochem Physiol. 1962;40:869–75.

    Article  CAS  Google Scholar 

  259. Monjazeb AM, High KP, Connoy A, Hart LS, Koumenis C, Chilton FH. Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis. 2006;27:1950–60.

    Article  CAS  PubMed  Google Scholar 

  260. Monjazeb AM, High KP, Koumenis C, Chilton FH. Inhibitors of arachidonic acid metabolism act synergistically to signal apoptosis in neoplastic cells. Prostaglandins Leukot Essent Fatty Acids. 2005;73:463–74.

    Article  CAS  PubMed  Google Scholar 

  261. Canuto RA, Muzio G, Bassi AM, Maggiora M, Leonarduzzi G, Lindahl R, Dianzani MU, Ferro M. Enrichment with arachidonic acid increases the sensitivity of hepatoma cells to the cytotoxic effects of oxidative stress. Free Radic Biol Med. 1995;18:287–93.

    Article  CAS  PubMed  Google Scholar 

  262. Piazzi G, D’Argenio G, Prossomariti A, Lembo V, Mazzone G, Candela M, Biagi E, Brigidi P, Vitaglione P, Fogliano V, D’Angelo L, Fazio C, Munarini A, Belluzzi A, Ceccarelli C, Chieco P, Balbi T, Loadman PM, Hull MA, Romano M, Bazzoli F, Ricciardiello L. Eicosapentaenoic acid free fatty acid prevents and suppresses colonic neoplasia in colitis-associated colorectal cancer acting on notch signaling and gut microbiota. Int J Cancer. 2014;135:2004–13.

    Article  CAS  PubMed  Google Scholar 

  263. Sauer LA, Dauchy RT, Blask DE, Krause JA, Davidson LK, Dauchy EM. Eicosapentaenoic acid suppresses cell proliferation in MCF-7 human breast cancer xenografts in nude rats via a pertussis toxin-sensitive signal transduction pathway. J Nutr. 2005;135:2124–9.

    Article  CAS  PubMed  Google Scholar 

  264. Gu Z, Wu J, Wang S, Suburu J, Chen H, Thomas MJ, Shi L, Edwards IJ, Berquin IM, Chen YQ. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells. Carcinogenesis. 2013;34:1968–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Wang S, Wu J, Suburu J, Gu Z, Cai J, Axanova LS, Cramer SD, Thomas MJ, Perry DL, Edwards IJ, Mucci LA, Sinnott JA, Loda MF, Sui G, Berquin IM, Chen YQ. Effect of dietary polyunsaturated fatty acids on castration-resistant Pten-null prostate cancer. Carcinogenesis. 2012;33:404–12.

    Article  PubMed  CAS  Google Scholar 

  266. Blanckaert V, Ulmann L, Mimouni V, Antol J, Brancquart L, Chénais B. Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. Int J Oncol. 2010;36:737–42.

    Article  CAS  PubMed  Google Scholar 

  267. Collett ED, Davidson LA, Fan YY, Lupton JR, Chapkin RS. n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am J Physiol Cell Physiol. 2001;280:C1066–75.

    Article  CAS  PubMed  Google Scholar 

  268. Appel MJ, Woutersen RA. Dietary fish oil (MaxEPA) enhances pancreatic carcinogenesis in azaserine-treated rats. Br J Cancer. 1996;73:36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Das UN. Tuning free radical metabolism to kill tumor cells selectively with emphasis on the interaction(s) between essential fatty acids, free radicals, lymphokines and prostaglandins. Ind J Pathol Microbiol. 1990;33:94–103.

    CAS  Google Scholar 

  270. Das UN. Cis-unsaturated fatty acids as potential anti-mutagenic, tumoricidal and anti-metastatic agents. Asia Pacific J Pharmacol. 1992;7:305–27.

    CAS  Google Scholar 

  271. Galeotti T, Borrello S, Masoti L. Oxy radical sources, scavenger systems and membrane damage in cancer cells. In: Das DK, Essman R, editors. Oxygen radicals: systemic events and disease processes. Basel: S. Karger; 1990. p. 129–48.

    Chapter  Google Scholar 

  272. Dianzani MU, Rossi MA. Lipid peroxidation in tumors. In: Pani P, Feo F, Columbano A, Cagliari ESA, editors. Recent trends in chemical carcinogenesis, vol. 1. Italy: Cagliari; 1981. p. 243–57.

    Google Scholar 

  273. Bartoli GM, Galeotti T. Growth-related lipid peroxidation in tumor microsomal membranes and mitochondria. Biochim Biophys Acta. 1979;574:537–41.

    Article  CAS  PubMed  Google Scholar 

  274. Hostetler KY, Zenner BD, Morris HP. Phospholipid content of mitochondrial and microsomal membranes from Morris hepatomas of varying growth rates. Cancer Res. 1979;39:2978–83.

    CAS  PubMed  Google Scholar 

  275. Hartz JW, Morton RE, Waite MM, Morris HP. Correlation of fatty acyl composition of mitochondrial and microsomal phospholipid with growth rate of rat hepatomas. Lab Invest. 1982;46:73–8.

    CAS  PubMed  Google Scholar 

  276. Cheeseman KH, Emery S, Maddix SP, Slater TF, Burton GW, Ingold K. Studies on lipid peroxidation in normal and tumour tissue. The Yoshida rat liver tumour. Biochem J. 1988;250:247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Cheeseman KH, Burton GW, Ingold KU, Slater TF. Lipid peroxidation and lipid antioxidants in normal and tumor cells. Toxicol Pathol. 1984;12:235–9.

    Article  CAS  PubMed  Google Scholar 

  278. Borrello S, Minotti G, Galeotti T. Factors influencing O2 and t-Bu OOH-dependent lipid peroxidation of tumor microsomes. In: Rotilio G, editor. Superoxide and superoxide dismutase in chemistry, biology and medicine. Amsterdam: Elsevier; 323, 1988. p. 324.

    Google Scholar 

  279. Das UN, Begin ME, Ells G, Huang YS, Horrobin DF. Polyunsaturated fatty acids augment free radical generation in tumor cells in vitro. Biochem Biophys Res Commun. 1987;145:15–24.

    Article  CAS  PubMed  Google Scholar 

  280. Das UN, Huang YS, Begin ME, Ells G, Horrobin DF. Uptake and distribution of cis-unsaturated fatty acids and their effect on free radical generation in normal and tumor cells in vitro. Free Radical Biol Med. 1987;3:9–14.

    Article  CAS  Google Scholar 

  281. Bendetti A. Loss of lipid peroxidation as a histochemical marker for preneoplastic hepatocellular foci of rats. Cancer Res. 1984;44:5712–7.

    CAS  Google Scholar 

  282. Dunbar LM, Bailey JM. Enzyme deletions and essential fatty acid metabolism in cultured cells. J Biol Chem. 1975;250:1152–3.

    CAS  Google Scholar 

  283. Morton RE, Hartz JW, Reitz RC, Waite BM, Morris H. The acyl-CoA desaturases of microsomes from rat liver and the Morris 7777 hepatoma. Biochim Biophys Acta. 1979;573:321–31.

    Article  CAS  PubMed  Google Scholar 

  284. Nassar BA, Das UN, Huang YS, Ells G, Horrobin DF. The effect of chemical hepatocarcinogenesis on liver phospholipid composition in rats fed n-6 and n-3 fatty acid-supplemented diets. Proc Soc Exp Biol Med. 1992;199:365–8.

    Article  CAS  PubMed  Google Scholar 

  285. Das UN. Essential fatty acids- a review. Curr Pharm Biotechnol. 2006;7:467–82.

    Article  CAS  PubMed  Google Scholar 

  286. Das UN. Essential fatty acids: biochemistry, physiology, and pathology. Biotechnol J. 2006;1:420–39.

    Article  CAS  PubMed  Google Scholar 

  287. Serhan CN, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids. 2004;39:1125–32.

    Article  CAS  PubMed  Google Scholar 

  288. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196:1025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med. 2000;192:1197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Serhan CN, Takano T, Chiang N, Gronert K, Clish CB. Formation of endogenous “antiinflammatory” lipid mediators by transcellular biosynthesis. Lipoxins and aspirin-triggered lipoxins inhibit neutrophil recruitment and vascular permeability. Am J Respir Crit Care Med. 2000;161(2 Pt 2):S95–S101.

    Article  CAS  PubMed  Google Scholar 

  291. Cummings KB, Robertson RP. Prostaglandin: increased production by renal cell carcinoma. J Urol. 1977;118:720–3.

    Article  CAS  PubMed  Google Scholar 

  292. Hong SL, Wheless CM, Levine L. Elevated prostaglandins synthetase activity in methylcholanthrene-transformed mouse BALB/3T3. Prostaglandins. 1977;13:271–9.

    Article  CAS  PubMed  Google Scholar 

  293. Ylikorkala O, Kauppila A, Viinikka L. Effect of cytostatics on prostaglandin F2 alpha prostacyclin, and thromboxane in patients with gynecologic malignancies. Obstet Gynecol. 1981;58:483–6.

    CAS  PubMed  Google Scholar 

  294. Rolland PH, Martin PM, Jacquemier J, Rolland AM, Toga M. Prostaglandin in human breast cancer: evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. J Natl Cancer Inst. 1980;64:1061–70.

    CAS  PubMed  Google Scholar 

  295. Trevisani A, Ferretti E, Capuzzo A, Tomasi V. Elevated levels of prostaglandin E2 in Yoshida hepatoma and the inhibition of tumour growth by non-steroidal anti-inflammatory drugs. Br J Cancer. 1980;41:341–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Young MR, Newby M. Enhancement of Lewis lung carcinoma cell migration by prostaglandin E2 produced by macrophages. Cancer Res. 1986;46:160–4.

    CAS  PubMed  Google Scholar 

  297. Cyran J, Lea MA, Lysz TW. Prostaglandin biosynthetic capacity of hepatomas with different growth rates. Int J Biochem. 1989;21:445–51.

    Article  CAS  PubMed  Google Scholar 

  298. LeFever A, Funahashi A. Elevated prostaglandin E2 levels in bronchoalveolar lavage fluid of patients with bronchogenic carcinoma. Chest. 1990;98:1397–402.

    Article  CAS  PubMed  Google Scholar 

  299. Qiao L, Kozoni V, Tsioulias GJ, Koutsos MI, Hanif R, Shiff SJ, Rigas B. Selected eicosanoids increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo. Biochim Biophys Acta. 1995;1258:215–23.

    Article  PubMed  Google Scholar 

  300. Hansen-Petrik MB, McEntee MF, Jull B, Shi H, Zemel MB, Whelan J. Prostaglandin E(2) protects intestinal tumors from nonsteroidal anti-inflammatory drug-induced regression in Apc(Min/+) mice. Cancer Res. 2002;62:403–8.

    CAS  PubMed  Google Scholar 

  301. Oberley LW, Buettner G. Role of SOD in cancer. A review. Cancer Res. 1979;39:1141–9.

    CAS  PubMed  Google Scholar 

  302. Tisdale MJ, Mahmoud MD. Activities of free radical metabolizing enzymes in tumours. Br J Cancer. 1983;47:809–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Bize IB, Oberley LW, Morris HP. Superoxide dismutase and superoxide radical in Morris hepatomas. Cancer Res. 1980;40:3686–93.

    CAS  PubMed  Google Scholar 

  304. Hendrickse CW, Kelly RW, Radley S, Donovan IA, Keighley MR, Neoptolemos JP. Lipid peroxidation and prostaglandins in colorectal cancer. Br J Surg. 1994;81:1219–23.

    Article  CAS  PubMed  Google Scholar 

  305. Jang YC, Remmen VH. The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol. 2009;44:256–60.

    Article  CAS  PubMed  Google Scholar 

  306. Gorman A, McGowan A, Cotter TG. Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Lett. 1997;404:27–33.

    Article  CAS  PubMed  Google Scholar 

  307. Li M, Beg AA. Induction of necrotic-like cell death by tumor necrosis factor alpha and caspase inhibitors: novel mechanism for killing virus-infected cells. J Virol. 2000;74:7470–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Huang TT, Carlson EJ, Raineri I, Gillespie AM, Kozy H, Epstein CJ. The use of transgenic and mutant mice to study oxygen free radical metabolism. Ann NY Acad Sci. 1999;893:95–112.

    Article  CAS  PubMed  Google Scholar 

  309. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 1999.

    Google Scholar 

  310. Panaretakis T, Shabalina IG, Grandér D, Shoshan MC, DePierre JW. Reactive oxygen species and mitochondria mediate the induction of apoptosis in human hepatoma HepG2 cells by the rodent peroxisome proliferator and hepatocarcinogen, perfluorooctanoic acid. Toxicol Appl Pharmacol. 2001;173:56–64.

    Article  CAS  PubMed  Google Scholar 

  311. Hampton MB, Fadeel B, Orrenius S. Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci. 1998;854:328–35.

    Article  CAS  PubMed  Google Scholar 

  312. Jacobson MD, Raff MC. Programmed cell death and Bcl-2 protection in very low oxygen. Nature. 1995;374:814–6.

    Article  CAS  PubMed  Google Scholar 

  313. Pervaiz S, Ramalingam JK, Hirpara JL, Clément MV. Superoxide anion inhibits drug-induced tumor cell death. FEBS Lett. 1999;459:343–8.

    Article  CAS  PubMed  Google Scholar 

  314. Wagner BA, Buettner GR, Oberley LW, Burns CP. Sensitivity of K562 and HL-60 cells to edelfosine, an ether lipid drug, correlates with production of reactive oxygen species. Cancer Res. 1998;58:2809–16.

    CAS  PubMed  Google Scholar 

  315. Arakaki N, Kajihara T, Arakaki R, Ohnishi T, Kazi JA, Nakashima H, Daikuhara Y. Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. J Biol Chem. 1999;274:13541–6.

    Article  CAS  PubMed  Google Scholar 

  316. Tamatani M, Ogawa S, Nuñez G, Tohyama M. Growth factors prevent changes in Bcl-2 and Bax expression and neuronal apoptosis induced by nitric oxide. Cell Death Differ. 1998;5:911–9.

    Article  CAS  PubMed  Google Scholar 

  317. Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R, Griffin JD. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood. 1999;93:2928–35.

    Article  CAS  PubMed  Google Scholar 

  318. Zimmerman RJ, Marafino BJ Jr, Chan A, Landre P, Winkelhake JL. The role of oxidant injury in tumor cell sensitivity to recombinant human tumor necrosis factor in vivo. Implications for mechanisms of action. J Immunol. 1989;142:1405–9.

    CAS  PubMed  Google Scholar 

  319. Godfrey RW, Johnson WJ, Hoffstein ST. Recombinant tumor necrosis factor and interleukin-1 both stimulate human synovial cell arachidonic acid release and phospholipid metabolism. Biochem Biophys Res Commun. 1987;142:235–41.

    Article  CAS  PubMed  Google Scholar 

  320. Dayer JM, Beutler B, Cerami A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med. 1985;162:2163–8.

    Article  CAS  PubMed  Google Scholar 

  321. Nara K, Odagiri H, Fujii M, Yamanaka Y, Yokoyama M, Morita T, Sasaki M, Kon M, Abo T. Increased production of tumor necrosis factor and prostaglandin E2 by monocytes in cancer patients and its unique modulation by their plasma. Cancer Immunol Immunother. 1987;25:126–32.

    Article  CAS  PubMed  Google Scholar 

  322. Neale ML, Fiera RA, Matthews N. Involvement of phospholipase A2 activation in tumour cell killing by tumour necrosis factor. Immunology. 1988;64:81–5. Hepburn A, Boeynaems JM, Fiers W, Dumont JE. Modulation of tumor necrosis factor-alpha cytotoxicity in L929 cells by bacterial toxins, hydrocortisone and inhibitors of arachidonic acid metabolism. Biocehem Biophys Res Commun 1987; 149: 815–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  323. Suffys P, Beyaert R, Van Roy F, Fiers W. Reduced tumour necrosis factor-induced cytotoxicity by inhibitors of the arachidonic acid metabolism. Biochem Biophys Res Commun. 1987;149:735–43.

    Article  CAS  PubMed  Google Scholar 

  324. Matthews N, Neale ML, Jackson SK, Stark JM. Tumour cell killing by tumour necrosis factor: inhibition by anaerobic conditions, free-radical scavengers and inhibitors of arachidonate metabolism. Immunology. 1987;62:153–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  325. Berkow RL, Wang D, Larrick JW, Dodson RW, Howard TH. Enhancement of neutrophil superoxide production by preincubation with recombinant human tumor necrosis factor. J Immunol. 1987;139:3783–91.

    CAS  PubMed  Google Scholar 

  326. Talmadge JE, Bowersox O, Tribble H, Lee SH, Shepard HM, Liggitt D. Toxicity of tumor necrosis factor is synergistic with gamma-interferon and can be reduced with cyclooxygenase inhibitors. Am J Pathol. 1987;128:410–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Hori T, Kashiyama S, Hayakawa M, Shibamoto S, Tsujimoto M, Oku N, Ito F. Tumor necrosis factor is cytotoxic to human fibroblasts in the presence of exogenous arachidonic acid. Exp Cell Res. 1989;185:41–9.

    Article  CAS  PubMed  Google Scholar 

  328. Hayakawa M, Oku N, Takagi T, Hori T, Shibamoto S, Yamanaka Y, Takeuchi K, Tsujimoto M, Ito F. Involvement of prostaglandin-producing pathway in the cytotoxic action of tumor necrosis factor. Cell Struct Funct. 1991;16:333–40.

    Article  CAS  PubMed  Google Scholar 

  329. Das UN, Padma M, Sagar PS, Ramesh G, Koratkar R. Stimulation of free radical generation in human leukocytes by various agents including tumor necrosis factor is a calmodulin dependent process. Biochem Biophys Res Commun. 1990;167:1030–6.

    Article  CAS  PubMed  Google Scholar 

  330. Palombella VJ, Vilcek J. Mitogenic and cytotoxic actions of tumor necrosis factor in BALB/c 3T3 cells. Role of phospholipase activation. J Biol Chem. 1989;264:18128–36.

    CAS  PubMed  Google Scholar 

  331. Reid T, Ramesha CS, Ringold GM. Resistance to killing by tumor necrosis factor in an adipocyte cell line caused by a defect in arachidonic acid biosynthesis. J Biol Chem. 1991;266:16580–6.

    CAS  PubMed  Google Scholar 

  332. Chang DJ, Ringold GM, Heller RA. Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-alpha is mediated by lipoxygenase metabolites of arachidonic acid. Biochem Biophys Res Commun. 1992;188:538–46.

    Article  CAS  PubMed  Google Scholar 

  333. Fletcher JR, Collins JN, Graves ED 3rd, Luterman A, Williams MD, Izenberg SD, Rodning CB. Tumor necrosis factor-induced mortality is reversed with cyclooxygenase inhibition. Ann Surg. 1993;217:668–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Hayakawa M, Ishida N, Takeuchi K, Shibamoto S, Hori T, Oku N, Ito F, Tsujimoto M. Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J Biol Chem. 1993;268:11290–5.

    CAS  PubMed  Google Scholar 

  335. West M, Mhatre M, Ceballos A, Floyd RA, Grammas P, Gabbita SP, Hamdheydari L, Mai T, Mou S, Pye QN, Stewart C, West S, Williamson KS, Zemlan F, Hensley K. The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem. 2004;91:133–43.

    Article  CAS  PubMed  Google Scholar 

  336. Kovaríková M, Hofmanová J, Soucek K, Kozubík A. The effects of TNF-alpha and inhibitors of arachidonic acid metabolism on human colon HT-29 cells depend on differentiation status. Differentiation. 2004;72:23–31.

    Article  PubMed  Google Scholar 

  337. Vento R, D’Alessandro N, Giuliano M, Lauricella M, Carabillo M, Tesoriere G. Induction of apoptosis by arachidonic acid in human retinoblastoma Y79 cells: involvement of oxidative stress. Exp Eye Res. 2000;70:503–17.

    Article  CAS  PubMed  Google Scholar 

  338. Sagar PS, Das UN. Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells in vitro. Prostaglandins Leukot Essent Fatty Acids. 1995;53:287–99.

    Article  CAS  PubMed  Google Scholar 

  339. Lin PS, Kwock L, Goodchild NT. Copper chelator enhancement of bleomycin cytotoxicity. Cancer. 1980;46:2360–4.

    Article  CAS  PubMed  Google Scholar 

  340. Werts ED, Gould MN. Relationships between cellular superoxide dismutase and susceptibility to chemically induced cancer in the rat mammary gland. Carcinogenesis. 1986;7:1197–201.

    Article  CAS  PubMed  Google Scholar 

  341. Cameron DJ. Suppression or enhancement by superoxide dismutase of tumor cell killing by macrophages of normal donors and breast cancer patients. Jpn J Exp Med. 1986;56:135–40.

    CAS  PubMed  Google Scholar 

  342. Kawaguchi T, Takeyasu A, Matsunobu K, Uda T, Ishizawa M, Suzuki K, Nishiura T, Ishikawa M, Taniguchi N. Stimulation of Mn-superoxide dismutase expression by tumor necrosis factor-alpha: quantitative determination of Mn-SOD protein levels in TNF-resistant and sensitive cells by ELISA. Biochem Biophys Res Commun. 1990;171:1378–86.

    Article  CAS  PubMed  Google Scholar 

  343. Cervantes A, Pinedo HM, Lankelma J, Schuurhuis GJ. The role of oxygen-derived free radicals in the cytotoxicity of doxorubicin in multidrug resistant and sensitive human ovarian cancer cells. Cancer Lett. 1988;41:169–77.

    Article  CAS  PubMed  Google Scholar 

  344. Mimnaugh EG, Dusre L, Atwell J, Myers CE. Differential oxygen radical susceptibility of adriamycin-sensitive and -resistant MCF-7 human breast tumor cells. Cancer Res. 1989;49:8–15.

    CAS  PubMed  Google Scholar 

  345. Huang C, Wu M. Superoxide dismutase activity in tissues from 19 cases of hepatocellular carcinoma. Zhonghua Yi Xue Za Zhi. 1990;70:138–9.

    CAS  PubMed  Google Scholar 

  346. Han YH, Kim SH, Kim SZ, Park WH. Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol Rep. 2008;20:689–93.

    CAS  PubMed  Google Scholar 

  347. Malafa M, Margenthaler J, Webb B, Neitzel L, Christophersen M. MnSOD expression is increased in metastatic gastric cancer. J Surg Res. 2000;88:130–4.

    Article  CAS  PubMed  Google Scholar 

  348. Westman NG, Marklund SL. Copper-and zinc-containing superoxide dismutase and manganese-containing superoxide dismutase in human tissues and human malignant tumors. Cancer Res. 1981;41:2962–6.

    CAS  PubMed  Google Scholar 

  349. Zhong W, Oberley LW, Oberley TD, St Clair DK. Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene. 1997;14:481–90.

    Article  CAS  PubMed  Google Scholar 

  350. Toh Y, Kuninaka S, Oshiro T, Ikeda Y, Nakashima H, Baba H, Kohnoe S, Okamura T, Mori M, Sugimachi K. Overexpression of manganese superoxide dismutase mRNA may correlate with aggressiveness in gastric and colorectal adenocarcinomas. Int J Oncol. 2000;17:107–12.

    CAS  PubMed  Google Scholar 

  351. Izutani R, Asano S, Imano M, Kuroda D, Kato M, Ohyanagi H. Expression of manganese superoxide dismutase in esophageal and gastric cancers. J Gastroenterol. 1998;33:816–22.

    Article  CAS  PubMed  Google Scholar 

  352. Zhong W, Yan T, Lim R, Oberley LW. Expression of superoxide dismutases, catalase, and glutathione peroxidase in glioma cells. Free Rad Biol Med. 1999;27:1334–45.

    Article  CAS  PubMed  Google Scholar 

  353. Huang Y, He T, Domann FE. Decreased expression of manganese superoxide dismutase in transformed cells is associated with increased cytosine methylation of the SOD2 gene. DNA Cell Biol. 1999;18:643–52.

    Article  CAS  PubMed  Google Scholar 

  354. Clement MV, Pervaiz S. Reactive oxygen intermediates regulate cellular apoptosis response to apoptotic stimuli: an hypothesis. Free Rad Biol Med. 1999;30:247–52.

    Article  CAS  Google Scholar 

  355. Saunders JA, Rogers LC, Klomsiri C, Poole LB, Daniel LW. Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells. Free Radic Biol Med. 2010;49:2058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Li M, Zhao L, Liu J, Liu A, Jia C, Ma D, Jiang Y, Bai X. Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal. 2010;22:1469–76.

    Article  CAS  PubMed  Google Scholar 

  357. Das UN. Essential fatty acids enhance free radical generation and lipid peroxidation to induce apoptosis of tumor cells. Clin Lipidol. 2011;6:463–89.

    Article  CAS  Google Scholar 

  358. Das UN. Oxy radicals and their clinical implications. Curr Sci. 1993;65:964–8.

    CAS  Google Scholar 

  359. Das UN. Free radicals: biology and relevance to disease. J Assoc Physicians India. 1990;38:495–8.

    CAS  PubMed  Google Scholar 

  360. Halliwell BA. Superway to kill cancer cells? Nat Med. 2000;6:1105–6.

    Article  CAS  PubMed  Google Scholar 

  361. Morisaki N, Lindsey JA, Stitts JM, Zhang H, Cornwell DG. Fatty acid metabolism and cell proliferation. V. Evaluation of pathways for the generation of lipid peroxides. Lipids. 1984;19:381–94.

    Article  CAS  PubMed  Google Scholar 

  362. Morisaki N, Sprecher H, Milo GE, Cornwell DG. Fatty acid specificity in the inhibition of cell proliferation and its relationship to lipid peroxidation and prostaglandin biosynthesis. Lipids. 1982;17:893–9.

    Article  CAS  PubMed  Google Scholar 

  363. Liepkalns VA, Icard-Liepkalns C, Cornwell DG. Regulation of cell division in a human glioma cell clone by arachidonic acid and alpha-tocopherol quinone. Cancer Lett. 1982;15:173–8.

    Article  CAS  PubMed  Google Scholar 

  364. Cheeseman KH, Collins M, Maddix S, Milia A, Proudfoot K, Slater TF, Burton GW, Webb A, Inglod KU. Lipid peroxidation in regenerating rat liver. FEBS Lett. 1986;209:191–6.

    Article  CAS  PubMed  Google Scholar 

  365. Slater TF, Cheeseman KH, Benedetto C, Collins M, Emery S, Maddix S, Nodes JT, Proudfoot K, Burton GW, Ingold KU. Studies on the hyperplasia (‘regeneration’) of the rat liver following partial hepatectomy. Changes in lipid peroxidation and general biochemical aspects. Biochem J. 1990;265:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev. 1995;14:3–15.

    Article  CAS  PubMed  Google Scholar 

  367. Martinez JD, Pennington ME, Craven MT, Warters RL, Cress AE. Free radicals generated by ionizing radiation signal nuclear translocation of p53. Cell Growth Differ. 1997;8:941–9.

    CAS  PubMed  Google Scholar 

  368. Uberti D, Yavin E, Gil S, Ayasola KR, Goldfinger N, Rotter V. Hydrogen peroxide induces nuclear translocation of p53 and apoptosis in cells of oligodendroglia origin. Brain Res Mol Brain Res. 1999;65:167–75.

    Article  CAS  PubMed  Google Scholar 

  369. Kitamura Y, Ota T, Matsuoka Y, Tooyama I, Kimura H, Shimohama S, Nomura Y, Gebicke-Haerter PJ, Taniguchi T. Hydrogen peroxide-induced apoptosis mediated by p53 protein in glial cells. Glia. 1999;25:154–64.

    Article  CAS  PubMed  Google Scholar 

  370. Pani G, Bedogni B, Anzevino R, Colavitti R, Palazzotti B, Borrello S, Galeotti T. Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells. Cancer Res. 2000;60:4654–60.

    CAS  PubMed  Google Scholar 

  371. Hilf R, Murant RS, Narayana U, Gibson SL. Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced photosensitization in R 3230 AC mammary tumors. Cancer Res. 1986;46:211–7.

    CAS  PubMed  Google Scholar 

  372. Lee Y, Shacter E. Hydrogen peroxide inhibits activation, not activity, of cellular caspase-3 in vivo. Free Radic Biol Med. 2000;29:684–92.

    Article  CAS  PubMed  Google Scholar 

  373. Saretzki G, von Zglinicki T. Replicative senescence as a model of aging: the role of oxidative stress and telomere shortening-an overview. Z Gerontol Geriatr. 1999;32:69–75.

    Article  CAS  PubMed  Google Scholar 

  374. Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 1999;453:365–8.

    Article  CAS  PubMed  Google Scholar 

  375. von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med. 2000;28:64–74.

    Article  Google Scholar 

  376. Ludlow AT, Spangenburg EE, Chin ER, Cheng WH, Roth SM. Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci. 2014;69:821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–44.

    Article  Google Scholar 

  378. Romano GH, Harari Y, Yehuda T, Podhorzer A, Rubinstein L, Shamir R, Gottlieb A, Silberberg Y, Pe’er D, Ruppin E, Sharan R, Kupiec M. Environmental stresses disrupt telomere length homeostasis. PLoS Genet. 2013;9:e1003721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Tyurina YY, Tyurina VA, Certa G, Quinn PJ, Schor NF, Kagan VE. Direct evidence for antioxidant effect of BCL-2 in PC 12 rat pheochromocytoma cells. Arch Biochem Biophys. 1997;344:413–23.

    Article  CAS  PubMed  Google Scholar 

  380. Haldar S, Negrini M, Monne M, Sabbioni S, Croce CM. Down regulation of bcl-2 by p53 in breast cancer cells. Cancer Res. 1994;54:2095–7.

    CAS  PubMed  Google Scholar 

  381. Haldar S, Jena N, Croce CM. Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA. 1995;92:4507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993;75:241–51.

    Article  CAS  PubMed  Google Scholar 

  383. Das UN. Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins Leukotrienes Essen Fatty Acids. 1999;61:157–63.

    Article  CAS  Google Scholar 

  384. Padma M, Das UN. Effect of cis-unsaturated fatty acids on the activity of protein kinases and protein phosphorylation in macrophage tumor (AK-5) cells in vitro. Prostaglandins Leukotrienes Essen Fatty Acids. 1999;60:55–63.

    Article  CAS  Google Scholar 

  385. Esposti MD, Hatzinisiriou I, McLennan H, Ralph S. Bcl-2 and mitochondrial oxygen radicals. New approaches with reactive oxygen species-sensitive probes. J Biol Chem. 1999;274:29831–7.

    Article  CAS  PubMed  Google Scholar 

  386. Steinman HM. The Bcl-2 oncoprotein functions as a pro-oxidant. J Biol Chem. 1995;270:3487–90.

    CAS  PubMed  Google Scholar 

  387. Howard S, Bottino C, Brooke S, Cheng E, Giffard RG, Sapolsky R. Neuroprotective effects of bcl-2 overexpression in hippocampal cultures: interactions with pathways of oxidative damage. J Neurochem. 2002;83:914–23.

    Article  CAS  PubMed  Google Scholar 

  388. Virgili F, Santini MP, Canali R, Polakowska RR, Haake A, Perozzi G. Bcl-2 overexpression in the HaCaT cell line is associated with a different membrane fatty acid composition and sensitivity to oxidative stress. Free Radic Biol Med. 1998;24:93–101.

    Article  CAS  PubMed  Google Scholar 

  389. Sailaja P, Dwarakanath BS, Das UN. Arachidonic acid activates extrinsic apoptotic pathway to enhance tumoricidal action of bleomycin against IMR-32 cells. Prostaglandins Leukot Essent Fatty Acids. 2018;132:16–22.

    Article  CAS  Google Scholar 

  390. Naveen KVG, Das UNN. Amelioration of streptozotocin-induced type 2 diabetes mellitus in Wistar rats by arachidonic acid. Biochem Biophys Res Commun. 2018;496:105–13.

    Article  CAS  Google Scholar 

  391. Etienne-Mannevillea S, Lammerding J. Connecting the plasma membrane to the nucleus by intermediate filaments. Mole Biol Cell. 2017;28:695–6.

    Article  CAS  Google Scholar 

  392. McGowan SE, Jackson SK, Doro MM, Olson PJ. Peroxisome proliferators alter lipid acquisition and elastin gene expression in neonatal rat lung fibroblasts. Am J Phys. 1997;273(6 Pt 1):L1249–57.

    CAS  Google Scholar 

  393. Lin HL, Liu TY, Chau GY, Lui WY, Chi CW. Comparison of 2-methoxyestradiol-induced, docetaxel-induced, and paclitaxel-induced apoptosis in hepatoma cells and its correlation with reactive oxygen species. Cancer. 2000;89:983–94.

    Article  CAS  PubMed  Google Scholar 

  394. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407:390–5.

    Article  CAS  PubMed  Google Scholar 

  395. Das UN. A radical approach to cancer. Med Sci Monit. 2002;8:RA79–92.

    PubMed  Google Scholar 

  396. Ge Y, Byun JS, De Luca P, Gueron G, Yabe IM, Sadiq-Ali SG, Figg WD, Quintero J, Haggerty CM, Li QQ, De Siervi A, Gardner K. Combinatorial antileukemic disruption of oxidative homeostasis and mitochondrial stability by the redox reactive thalidomide 2-(2,4-difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) and flavopiridol. Mol Pharmacol. 2008;74:872–83.

    Article  CAS  PubMed  Google Scholar 

  397. Colquhoun A. Mechanisms of action of eicosapentaenoic acid in bladder cancer cells in vitro: alterations in mitochondrial metabolism, reactive oxygen species generation and apoptosis induction. J Urol. 2009;181:1885–93.

    Article  CAS  PubMed  Google Scholar 

  398. Naidu MR, Das UN, Kishan A. Intratumoral gamma-linoleic acid therapy of human gliomas. Prostaglandins Leukot Essent Fatty Acids. 1992;45:181–4.

    Article  CAS  PubMed  Google Scholar 

  399. Das UN, Prasad VV, Reddy DR. Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett. 1995;94:147–55.

    Article  CAS  PubMed  Google Scholar 

  400. Bakshi A, Mukherjee D, Bakshi A, Banerji AK, Das UN. Gamma-linolenic acid therapy of human gliomas. Nutrition. 2003;19:305–9.

    Article  CAS  PubMed  Google Scholar 

  401. Das UN. Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies. Med Sci Monit. 2007;13:RA119–RA31.

    CAS  PubMed  Google Scholar 

  402. Reddy DR, Prasad VS, Das UN. Intratumoural injection of gamma linolenic acid in malignant gliomas. J Clin Neurosci. 1998;5:36–9.

    Article  CAS  PubMed  Google Scholar 

  403. Smith DL, Willis AL, Mahmud I. Eicosanoid effects on cell proliferation in vitro: relevance to atherosclerosis. Prostaglandins Leukot Med. 1984;16:1–10.

    Article  CAS  PubMed  Google Scholar 

  404. Das UN. Lipoxins, resolvins, protectins, maresins and nitrolipids and their clinical implications with specific reference to cancer: part I. Clin Lipidol. 2013;8:437–63.

    Article  CAS  Google Scholar 

  405. Rossi MA, Cecchini G. Lipid peroxidation in hepatomas of different degrees of deviation. Cell Biochem Function. 1983;1:49–54.

    Article  CAS  Google Scholar 

  406. Burlakova EB, Palmina NP. On the possible role of free radical mechanism on the regulation of cell replication. Biofizika. 1967;12:82–8.

    CAS  PubMed  Google Scholar 

  407. Gonzalez M, Schemmel R, Dugan L, Gray J, Welsch C. Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids. 1993;28:827–32.

    Article  CAS  PubMed  Google Scholar 

  408. Cao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM. Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci U S A. 2000;97:11280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Brekke OL, Sagen E, Bjerve KS. Specificity of endogenous fatty acid release during tumor necrosis factor-induced apoptosis in WEHI 164 fibrosarcoma cells. J Lipid Res. 1999;40:2223–33.

    CAS  PubMed  Google Scholar 

  410. Ramesh G, Das UN. Effect of free fatty acids on two stage skin carcinogenesis in mice. Cancer Lett. 1996;100:199–209.

    Article  CAS  PubMed  Google Scholar 

  411. Calviello G, Palozza O, Piccioni E, Maggiano N, Frattucci A, Franceschelli P, Bartoli GM. Supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: effects on proliferation and apoptosis. Int J Cancer. 1998;75:699–705.

    Article  CAS  PubMed  Google Scholar 

  412. Chapkin RS, Jiang YH, Davidson LA, Lupton JR. Modulation of intracellular second messengers by dietary fat during colonic tumor development. Adv Exp Med Biol. 1997;422:85–96.

    Article  CAS  PubMed  Google Scholar 

  413. Roynette CE, Calder PC, Dupertuis YM, Pichar C. n-3 Polyunsaturated fatty acids and colon cancer prevention. Clin Nutr. 2004;23:139–51.

    Article  CAS  PubMed  Google Scholar 

  414. Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO, Palozza P. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2induced ERK-1 and -2 and HIF-1α induction pathway. Carcinogenesis. 2004;25:2303–10.

    Article  CAS  PubMed  Google Scholar 

  415. Yu H, Liu Y, Pan W, Shen S, Das UN. Polyunsaturated fatty acids augment tumoricidal action of 5-fluorouracil on gastric cancer cells by their action on vascular endothelial growth factor, tumor necrosis factor-α and lipid metabolism related factors. Arch Med Sci. 2015;11(2):282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Cai J, Jiang WG, Mansel RE. Inhibition of angiogenic factor- and tumor-induced angiogenesis by gamma linolenic acid. Prostaglandins Leukot Essen Fatty Acids. 1999;60:21–9.

    Article  CAS  Google Scholar 

  417. Rose DP, Connolly JM. Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. Int J Oncologia. 1999;15:1011–5.

    CAS  Google Scholar 

  418. Jin Y, Arita M, Zhang Q, Saban DR, Chauhan SK, Chiang N, Serhan CN, Dana R. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Invest Ophthalmol Vis Sci. 2009;50:4743–52.

    Article  PubMed  Google Scholar 

  419. Polavarapu S, Dwarakanath BS, Das UN. Differential action of polyunsaturated fatty acids and eicosanoids on bleomycin-induced cytotoxicity to neuroblastoma cells and lymphocytes. Arch Med Sci. 2018;14:207–29.

    Article  CAS  PubMed  Google Scholar 

  420. Hao H, Liu M, Wu P, Cai L, Tang K, Yi P, Li Y, Chen Y, Ye D. Lipoxin A4 and its analog suppress hepatocellular carcinoma via remodeling tumor microenvironment. Cancer Lett. 2011;309:85–94.

    Article  CAS  PubMed  Google Scholar 

  421. Vieira AM, Neto EH, Figueiredo CC, Barja Fidalgo C, Fierro IM, Morandi V. TL-1, a synthetic analog of lipoxin, modulates endothelial permeability and interaction with tumor cells through a VEGF-dependent mechanism. Biochem Pharmacol. 2014;90:388–96.

    Article  CAS  PubMed  Google Scholar 

  422. Brigatte P, Faiad OJ, Ferreira Nocelli RC, Landgraf RG, Palma MS, Cury Y, Curi R, Sampaio SC. Walker 256 tumor growth suppression by crotoxin involves formyl peptide receptors and lipoxin A4. Mediat Inflamm. 2016;2016:2457532.

    Article  CAS  Google Scholar 

  423. Schlager SI, Ohanian SH. Correlation between lipid synthesis in tumor cells and their sensitivity to humoral immune attack. Science. 1977;197:773–6.

    Article  CAS  PubMed  Google Scholar 

  424. Schlager SI, Ohanian SH, Borsos T. Correlation between the ability of tumor cells to incorporate specific fatty acids and their sensitivity to killing by a specific antibody plus guinea pig complement. J Natl Cancer Inst. 1978;61:931–4.

    CAS  PubMed  Google Scholar 

  425. Schlager SI, Ohanian SH. Modulation of tumor cell susceptibility to humoral immune killing through chemical and physical manipulation of cellular lipid and fatty acid composition. J Immunol. 1980;125:1196–200.

    CAS  PubMed  Google Scholar 

  426. Schlager SI, Madden LD, Meltzer MS, Bara S, Mamula MJ. Role of macrophage lipids in regulating tumoricidal activity. Cell Immunol. 1983;77:52–68.

    Article  CAS  PubMed  Google Scholar 

  427. Schlager SI, Meltzer MS, Madden LD. Role of membrane lipids in the immunological killing of tumor cells: II. Effector cell lipids. Lipids. 1983;18:483–8.

    Article  CAS  PubMed  Google Scholar 

  428. Schlager SI, Ohanian SH. Role of membrane lipids in the immunological killing of tumor cells: I. Target cell lipids. Lipids. 1983;18:475–82.

    Article  CAS  PubMed  Google Scholar 

  429. Schlager SI, Meltzer MS. Role of macrophage lipids in regulating tumoricidal activity. II. Internal genetic and external physiologic regulatory factors controlling macrophage tumor cytotoxicity also control characteristic lipid changes associated with tumoricidal cells. Cell Immunol. 1983;80:10–9.

    Article  CAS  PubMed  Google Scholar 

  430. Bell HS, Wharton SB, Leaver HA, Whittle IR. Effects of N-6 essential fatty acids on glioma invasion and growth: experimental studies with glioma spheroids in collagen gels. J Neurosurg. 1999;91:989–96.

    Article  CAS  PubMed  Google Scholar 

  431. Leaver HA, Wharton SB, Bell HS, Leaver-Yap IM, Whittle IR. Highly unsaturated fatty acid induced tumour regression in glioma pharmacodynamics and bioavailability of gamma linolenic acid in an implantation glioma model: effects on tumour biomass, apoptosis and neuronal tissue histology. Prostaglandins Leukot Essent Fatty Acids. 2002;67:283–92.

    Article  CAS  PubMed  Google Scholar 

  432. Benadiba M, Miyake JA, Colquhoun A. Gamma-linolenic acid alters Ku80, E2F1, and bax expression and induces micronucleus formation in C6 glioma cells in vitro. IUBMB Life. 2009;61:244–51.

    Article  CAS  PubMed  Google Scholar 

  433. Rohrbach S. Effects of dietary polyunsaturated fatty acids on mitochondria. Curr Pharm Des. 2009;15:4103–16.

    Article  CAS  PubMed  Google Scholar 

  434. Tuo Y, Wang D, Li S, Chen C. Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. Endocrine. 2011;39:128–38.

    Article  CAS  PubMed  Google Scholar 

  435. Das UN. Arachidonic acid and lipoxin A4 as possible anti-diabetic molecules. Prostaglandins Leukot Essent Fatty Acids. 2013;88:201–10.

    Article  CAS  PubMed  Google Scholar 

  436. Kaviarasan K, Mohanlal J, Mohammad Mulla MA, Shanmugam S, Sharma T, Das UN, Angayarkanni N. Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance as potential risk factors for diabetic retinopathy. Metabolism. 2015;64:958–66.

    Article  CAS  PubMed  Google Scholar 

  437. Zeghichi-Hamri S, de Lorgeril M, Salen P, Chibane M, de Leiris J, Boucher F, Laporte F. Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats. Nutr Res. 2010;30:849–57.

    Article  CAS  PubMed  Google Scholar 

  438. Sangeetha PS, Das UN. Gamma-linolenic acid and eicosapentaenoic acid potentiate the cytotoxicity of anti-cancer drugs on human cervical carcinoma (HeLa) cells in vitro. Med Sci Res. 1993;21:457–9.

    Google Scholar 

  439. Hagopian K, Weber KL, Hwee DT, Van Eenennaam AL, López-Lluch G, Villalba JM, Burón I, Navas P, German JB, Watkins SM, Chen Y, Wei A, McDonald RB, Ramsey JJ. Complex I-associated hydrogen peroxide production is decreased and electron transport chain enzyme activities are altered in n-3 enriched fat-1 mice. PLoS One. 2010;5:e12696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  440. Kansal S, Negi AK, Kaur R, Sarotra P, Sharma G, Aggarwal R, Agnihotri N. Evaluation of the role of oxidative stress in chemopreventive action of fish oil and celecoxib in the initiation phase of 7,12-dimethyl benz(α)anthracene-induced mammary carcinogenesis. Tumour Biol. 2011;32:167–77.

    Article  CAS  PubMed  Google Scholar 

  441. Dymkowska D, Wojtczak L. Arachidonic acid-induced apoptosis in rat hepatoma AS-30D cells is mediated by reactive oxygen species. Acta Biochim Pol. 2009;56:711–5.

    Article  CAS  PubMed  Google Scholar 

  442. Ribeiro G, Benadiba M, de Oliveira SD, Colquhoun A. The novel ruthenium-gamma-linolenic complex [Ru(2)(aGLA)(4)Cl] inhibits C6 rat glioma cell proliferation and induces changes in mitochondrial membrane potential, increased reactive oxygen species generation and apoptosis in vitro. Cell Biochem Funct. 2010;28:15–23.

    Article  CAS  PubMed  Google Scholar 

  443. Giros A, Grzybowski M, Sohn VR, Pons E, Fernandez-Morales J, Xicola RM, Sethi P, Grzybowski J, Goel A, Boland CR, Gassull MA, Llor X. Regulation of colorectal cancer cell apoptosis by the n-3 polyunsaturated fatty acids Docosahexaenoic and Eicosapentaenoic. Cancer Prev Res (Phila). 2009;2:732–42.

    Article  CAS  Google Scholar 

  444. Ponnala S, Rao KP, Chaudhury JR, Ahmed J, Rama Rao B, Kanjilal S, Hasan Q, Das UN. Effect of polyunsaturated fatty acids on diphenyl hydantoin-induced genetic damage in vitro and in vivo. Prostaglandins Leukot Essent Fatty Acids. 2009;80:43–50.

    Article  CAS  PubMed  Google Scholar 

  445. Das UN, Rao KP. Effect of gamma-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins Leukot Essent Fatty Acids. 2006;74:165–73.

    Article  CAS  PubMed  Google Scholar 

  446. Das UN, Ramadevi G, Rao KP, Rao MS. Prostaglandins and their precursors can modify genetic damage-induced by gamma-radiation and benzo(a)pyrene. Prostaglandins. 1985;29:911–20.

    Article  CAS  PubMed  Google Scholar 

  447. Das UN. Tumoricidal and anti-angiogenic actions of gamma-linolenic acid and its derivatives. Curr Pharm Biotechnol. 2006;7:457–66.

    Article  CAS  PubMed  Google Scholar 

  448. Dhayal S, Morgan NG. Pharmacological characterization of the cytoprotective effects of polyunsaturated fatty acids in insulin-secreting BRIN-BD11 cells. Br J Pharmacol. 2011;162:1340–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Suresh Y, Das UN. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: effect of omega-6 fatty acids. Nutrition. 2003;19:93–114.

    Article  CAS  PubMed  Google Scholar 

  450. Suresh Y, Das UN. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Effect of omega-3 fatty acids. Nutrition. 2003;19:213–28.

    Article  CAS  PubMed  Google Scholar 

  451. Bazan NG. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care. 2007;10:136–41.

    Article  CAS  PubMed  Google Scholar 

  452. Madhavi N, Das UN. Reversal of KB-3-1 and KB-Ch-8-5 tumor cell drug-resistance by cis-unsaturated fatty acids in vitro. Med Sci Res. 1994;22:689–92.

    Google Scholar 

  453. Madhavi N, Das UN. Effect of n-6 and n-3 fatty acids on the survival of vincristine sensitive and resistant human cervical carcinoma cells in vitro. Cancer Lett. 1994;84:31–41.

    Article  CAS  PubMed  Google Scholar 

  454. Das UN, Madhavi N, Sravan Kumar G, Padma M, Sangeetha P. Can tumour cell drug resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids. 1998;58:39–54.

    Article  CAS  PubMed  Google Scholar 

  455. Germain E, Chajès V, Cognault S, Lhuillery C, Bougnoux P. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. Int J Cancer. 1998;75:578–83.

    Article  CAS  PubMed  Google Scholar 

  456. Mahéo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, Goré J. Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radic Biol Med. 2005;39:742–51.

    Article  PubMed  CAS  Google Scholar 

  457. Ilc K, Ferrero JM, Fischel JL, Formento P, Bryce R, Etienne MC, Milano G. Cytotoxic effects of two gamma linoleic salts (lithium gammalinolenate or meglumine gammalinolenate) alone or associated with a nitrosourea: an experimental study on human glioblastoma cell lines. Anti-Cancer Drugs. 1999;10:413–7.

    Article  CAS  PubMed  Google Scholar 

  458. Menendez JA, Ropero S, Lupu R, Colomer R. Omega-6 polyunsaturated fatty acid gamma-linolenic acid (18:3n-6) enhances docetaxel (Taxotere) cytotoxicity in human breast carcinoma cells: relationship to lipid peroxidation and HER-2/neu expression. Oncol Rep. 2004;11:1241–52.

    CAS  PubMed  Google Scholar 

  459. Menéndez JA, Ropero S, del Barbacid MM, Montero S, Solanas M, Escrich E, Cortés-Funes H, Colomer R. Synergistic interaction between vinorelbine and gamma-linolenic acid in breast cancer cells. Breast Cancer Res Treat. 2002;72:203–19.

    Article  PubMed  Google Scholar 

  460. Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R. Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol. 2004;24:1369–83.

    CAS  PubMed  Google Scholar 

  461. Kong X, Ge H, Chen L, Liu Z, Yin Z, Li P, Li M. Gamma-linolenic acid modulates the response of multidrug-resistant K562 leukemic cells to anticancer drugs. Toxicol In Vitro. 2009;23:634–9.

    Article  CAS  PubMed  Google Scholar 

  462. Buckingham LE, Balasubramanian M, Safa AR, Shah H, Komarov P, Emanuele RM, Coon JS. Reversal of multi-drug resistance in vitro by fatty acid-PEG-fatty acid diesters. Int J Cancer. 1996;65:74–9.

    Article  CAS  PubMed  Google Scholar 

  463. Ramesh G, Das UN, Koratkar R, Padma M, Sagar PS. Effect of essential fatty acids on tumor cells. Nutrition. 1992;8:343–7.

    CAS  PubMed  Google Scholar 

  464. Ghosh J, Myers CE. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci U S A. 1998;95:13182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  465. Rizzo MT, Regazzi E, Garau D, Akard L, Dugan M, Boswell HS, Rizzoli V, Carlo-Stella C. Induction of apoptosis by arachidonic acid in chronic myeloid leukemia cells. Cancer Res. 1999;59:5047–53.

    CAS  PubMed  Google Scholar 

  466. Wolf LA, Laster SM. Characterization of arachidonic acid-induced apoptosis. Cell Biochem Biophys. 1999;30:353–68.

    Article  CAS  PubMed  Google Scholar 

  467. Cao Y, Dave KB, Doan TP, Prescott SM. Fatty acid CoA ligase 4 is up-regulated in colon adenocarcinoma. Cancer Res. 2001;61:8429–34.

    CAS  PubMed  Google Scholar 

  468. Sun Y, Tang XM, Half E, Kuo MT, Sinicrope FA. Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res. 2002;62:6323–8.

    CAS  PubMed  Google Scholar 

  469. Tang X, Sun YJ, Half E, Kuo MT, Sinicrope F. Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res. 2002;62:4903–8.

    CAS  PubMed  Google Scholar 

  470. Shureiqi I, Chen D, Lotan R, Yang P, Newman RA, Fischer SM, Lippman SM. 15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Res. 2000;60:6846–50.

    CAS  PubMed  Google Scholar 

  471. Shureiqi I, Chen D, Lee JJ, Yang P, Newman RA, Brenner DE, Lotan R, Fischer SM, Lippman SM. 15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. J Natl Cancer Inst. 2000;92:1136–42.

    Article  CAS  PubMed  Google Scholar 

  472. Shureiqi I, Xu X, Chen D, Lotan R, Morris JS, Fischer SM, Lippman SM. Nonsteroidal anti-inflammatory drugs induce apoptosis in esophageal cancer cells by restoring 15-lipoxygenase-1 expression. Cancer Res. 2001;61:4879–84.

    CAS  PubMed  Google Scholar 

  473. Maccarrone M, Ranalli M, Bellincampi L, Salucci ML, Sabatini S, Melino G, Finazzi-Agrò A. Activation of different lipoxygenase isozymes induces apoptosis in human erythroleukemia and neuroblastoma cells. Biochem Biophys Res Commun. 2000;272:345–50.

    Article  CAS  PubMed  Google Scholar 

  474. Avis I, Hong SH, Martinez A, Moody T, Choi YH, Trepel J, Das R, Jett M, Mulshine JL. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J. 2001;15:2007–9.

    Article  CAS  PubMed  Google Scholar 

  475. Hong SH, Avis I, Vos MD, Martínez A, Treston AM, Mulshine JL. Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res. 1999;59:2223–8.

    CAS  PubMed  Google Scholar 

  476. Leaver HA, Bell HS, Rizzo MT, Ironside JW, Gregor A, Wharton SB, Whittle IR. Antitumour and pro-apoptotic actions of highly unsaturated fatty acids in glioma. Prostaglandins Leukot Essent Fatty Acids. 2002;66:19–29.

    Article  CAS  PubMed  Google Scholar 

  477. Menendez JA, Mehmi I, Atlas E, Colomer R, Lupu R. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Int J Oncol. 2004;24:591–608.

    CAS  PubMed  Google Scholar 

  478. Menendez JA, Colomer R, Lupu R. Inhibition of fatty acid synthase-dependent neoplastic lipogenesis as the mechanism of gamma-linolenic acid-induced toxicity to tumor cells: an extension to Nwankwo’s hypothesis. Med Hypotheses. 2005;64:337–41.

    Article  CAS  PubMed  Google Scholar 

  479. Menendez JA, Colomer R, Lupu R. Why does tumor-associated fatty acid synthase (oncogenic antigen-519) ignore dietary fatty acids? Med Hypotheses. 2005;64:342–9.

    Article  CAS  PubMed  Google Scholar 

  480. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng S-W, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Levine L. Proteasome inhibitors: their effects on arachidonic acid release from cells in culture and arachidonic acid metabolism in rat liver cells. BMC Pharmacol. 2004;4:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  482. Eitsuka T, Nakagawa K, Suzuki T, Miyazawa T. Polyunsaturated fatty acids inhibit telomerase activity in DLD-1 human colorectal adenocarcinoma cells: a dual mechanism approach. Biochim Biophys Acta. 1737;2005:1–10.

    Google Scholar 

  483. Eitsuka T, Nakagawa K, Miyazawa T. Dual mechanisms for telomerase inhibition in DLD-1 human colorectal adenocarcinoma cells by polyunsaturated fatty acids. Biofactors. 2004;21:19–21.

    Article  CAS  PubMed  Google Scholar 

  484. Jiang WG, Bryce RP, Mansel RE. Gamma linolenic acid regulates gap junction communication in endothelial cells and their interaction with tumour cells. Prostaglandins Leukot Essent Fatty Acids. 1997;56:307–16.

    Article  CAS  PubMed  Google Scholar 

  485. Sethi S, Eastman AY, Eaton JW. Inhibition of phagocyte-endothelium interactions by oxidized fatty acids: a natural anti-inflammatory mechanism? J Lab Clin Med. 1996;128:27–38.

    Article  CAS  PubMed  Google Scholar 

  486. Germain E, Chajes V, Cognault S, Lhuillery C, Bougnoux P. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231; relationship to lipid peroxidation. Int J Cancer. 1998;75:578–83.

    Article  CAS  PubMed  Google Scholar 

  487. Shao Y, Pardini L, Pardini RS. Dietary menhaden oil enhances mitomycin C antitumor activity toward human mammary carcinoma MX-1. Lipids. 1995;30:1035–45.

    Article  CAS  PubMed  Google Scholar 

  488. Chow SC, Jondal M. Ca2+ entry in T cells is activated by emptying the inositol 1,4,5-triphosphate sensitive Ca2+ pool. Cell Calcium. 1990;11:641–6.

    Article  CAS  PubMed  Google Scholar 

  489. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yanker BA, Yuan J. Caspase-12 mediates endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403:98–103.

    Article  CAS  PubMed  Google Scholar 

  490. Huang ZH, Hii CS, Rathjen DA, Poulos A, Murray AW, Ferrante A. N-6 and N-3 polyunsaturated fatty acids stimulate translocation of protein kinase C alpha, beta I, beta II and –epsilon and enhance agonist-induced NADPH oxidase in macrophages. Biochem J. 1997;325(pt 2):553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Peterson DA, Mehta N, Butterfield J, Husak M, Christopher MM, Jagarlapudi S, Eaton JW. Polyunsaturated fatty acids stimulate superoxide formation in tumor cells: a mechanism for specific cytotoxicity and a model for tumor necrosis factor? Biochem Biophys Res Commun. 1988;155:1033–7.

    Article  CAS  PubMed  Google Scholar 

  492. Chiu LC, Wan JM. Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Lett. 1999;145:17–27.

    Article  CAS  PubMed  Google Scholar 

  493. Albino AP, Juan G, Traganos F, Reinhart L, Connolly J, Rose DP, Darzynkiewicz Z. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: association with decreased pRb phosphorylation. Cancer Res. 2000;60:4139–45.

    CAS  PubMed  Google Scholar 

  494. Chen ZY, Istfan NW. Docosahexaenoic acid, a major constituent of fish oil diets, prevents activation of cyclin-dependent kinases and S-phase entry by serum stimulation in HT-29 cells. Prostaglandins Leukot Essent Fatty Acids. 2001;64:67–73.

    Article  CAS  PubMed  Google Scholar 

  495. Palakurthi SS, Fluckiger R, Aktas H, Changolkar AK, Shahsafaei A, Harneit S, Kilic E, Halperin JA. Inhibition of translation initiation mediates the anticancer effect of the n-3 polyunsaturated fatty acid eicosapentaenoic acid. Cancer Res. 2000;60:2919–25.

    CAS  PubMed  Google Scholar 

  496. Nishida M, Maruyama Y, Tanaka R, Kontani K, Nagao T, Kurose H. Gαi and Gαo are target proteins of reactive oxygen species. Nature. 2000;408:492–5.

    Article  CAS  PubMed  Google Scholar 

  497. Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N Jr, Ashe KH, Frautschy SA, Cole GM. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron. 2004;43:633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Lukiw WJ, Cui J-G, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest. 2005;115:2774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  499. Comba A, Maestri DM, Berra MA, Garcia CP, Das UN, Eynard AR, Pasqualini ME. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids Health Dis. 2010;9:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  500. Liu B, Maher RJ, Hannun YA, Porter AT, Honn KV. 12(S)-HETE enhancement of prostate tumor cell invasion: selective role of PKC alpha. J Natl Cancer Inst. 1994;86:1145–51.

    Article  CAS  PubMed  Google Scholar 

  501. Ding XZ, Tong WG, Adrian TE. 12-lipoxygenase metabolite 12(S)-HETE stimulates human pancreatic cancer cell proliferation via protein tyrosine phosphorylation and ERK activation. Int J Cancer. 2001;94:630–6.

    Article  CAS  PubMed  Google Scholar 

  502. Chen GG, Xu H, Lee JF, Subramaniam M, Leung KL, Wang SH, Chan UP, Spelsberg TC. 15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator-activated receptor gamma-dependent pathway. Int J Cancer. 2003;107:837–43.

    Article  CAS  PubMed  Google Scholar 

  503. Najid A, Beneytout JL, Tixier M. Cytotoxicity of arachidonic acid and of its lipoxygenase metabolite 15-hydroperoxyeicosatetraenoic acid on human breast cancer MCF-7 cells in culture. Cancer Lett. 1989;46:137–41.

    Article  CAS  PubMed  Google Scholar 

  504. Shureiqi I, Jiang W, Zuo X, Wu Y, Stimmel JB, Leesnitzer LM, Morris JS, Fan HZ, Fischer SM, Lippman SM. The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003;100:9968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  505. Nixon JB, Kim KS, Lamb PW, Bottone FG, Eling TE. 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins Leukot Essent Fatty Acids. 2004;70:7–15.

    Article  CAS  PubMed  Google Scholar 

  506. Kim SJ. Lipoxins formation by rat basophilic leukemia (RBL-1) cells. Res Commun Chem Pathol Pharmacol. 1990;68:159–74.

    CAS  PubMed  Google Scholar 

  507. Stenke L, Edenius C, Samuelsson J, Lindgren JA. Deficient lipoxin synthesis: a novel platelet dysfunction in myeloproliferative disorders with special reference to blastic crisis of chronic myelogenous leukemia. Blood. 1991;78:2989–95.

    Article  CAS  PubMed  Google Scholar 

  508. Chen Y, Hao H, He S, Cai L, Li Y, Hu S, Ye D, Hoidal J, Wu P, Chen X. Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Mol Cancer Ther. 2010;9:2164–74.

    Article  CAS  PubMed  Google Scholar 

  509. Gleissman H, Yang R, Martinod K, Lindskog M, Serhan CN, Johnsen JI, Kogner P. Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. FASEB J. 2010;24:906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, Part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, U.N. (2020). Immune System, Inflammation, and Essential Fatty Acids and Their Metabolites in Cancer. In: Molecular Biochemical Aspects of Cancer. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0741-1_3

Download citation

Publish with us

Policies and ethics