Skip to main content

Introduction to Genes, Oncogenes, and Anti-oncogenes

  • Chapter
  • First Online:
Molecular Biochemical Aspects of Cancer
  • 433 Accesses

Abstract

Cancer is a major cause of significant morbidity and mortality in many countries across the globe though the type of cancers is different in different countries. The exact cause of majority of the cancers is not clear. Environmental agents (that include many mutagens and carcinogens) are considered to cause more than 50% of cancers. DNA damage leading to activation of oncogenes seems to be the underlying cause of cancer. In addition, suppression of the tumor suppressor genes is also at the center of the onset of cancer. Under normal physiological conditions, the immune system of the body recognizes tumor cells as foreign and mounts an attack to eliminate them. Cancer-specific antigens being weak antigens’ stimulation to the immune system is not adequate to mount a successful attack and eliminate them. As a result of DNA damage, there will be alterations in the activity and/or expression of p53, PTEN, ghrelin, leptin, Ras/Raf/ERK1/2, and PI3K/Akt and PIP3 that cause mitochondrial dysfunction, which results in changes in cell survival and function, growth, proliferation, migration, and cell size that ultimately leads to the development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad of Sci USA. 1971;68:820–3.

    Article  Google Scholar 

  2. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–5.

    Article  CAS  PubMed  Google Scholar 

  3. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature. 1998;396:177–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sherr CJ. Principles of tumor suppression. Cell. 2004;116:235–46.

    Article  CAS  PubMed  Google Scholar 

  5. Stiegler P, De Luca A, Bagella L, Giordano A. The COOH-terminal region of pRb2/p130 binds to histone deacetylase 1 (HDAC1), enhancing transcriptional repression of the E2F-dependent cyclin a promoter. Cancer Res. 1998;58:5049–52.

    CAS  PubMed  Google Scholar 

  6. Agoston AT, Argani P, De Marzo AM, Hicks JL, Nelson WG. Retinoblastoma pathway dysregulation causes DNA methyltransferase 1 overexpression in cancer via MAD2-mediated inhibition of the anaphase-promoting complex. Am J Pathol. 2007;170:1585–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jung JK, Arora P, Pagano JS, Jang KL. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res. 2007;67:5771–8.

    Article  CAS  PubMed  Google Scholar 

  8. Münger K, Howley P. Human papillomavirus immortalization and transformation functions. Virus Res. 2002;89:213–28.

    Article  PubMed  Google Scholar 

  9. Frolov M, Dyson N. Molecular mechanisms of E2F-dependent activation and RB-mediated repression. J Cell Sci. 2004;117(Pt 11):2173–81.

    Article  CAS  PubMed  Google Scholar 

  10. Goodrich D, Wang N, Qian Y, Lee E, Lee W. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell. 1991;67:293–302.

    Article  CAS  PubMed  Google Scholar 

  11. Wu C, Zukerberg L, Ngwu C, Harlow E, Lees J. In vivo association of E2F and DP family proteins. Mol Cell Biol. 1995;15:2536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vietri M, Bianchi M, Ludlow J, Mittnacht S, Villa-Moruzzi E. Direct interaction between the catalytic subunit of protein phosphatase 1 and pRb. Cancer Cell Int. 2006;6:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Parsam V, Kannabiran C, Honavar S, Vemuganti G, Ali M. A comprehensive, sensitive and economical approach for the detection of mutations in the RB1 gene in retinoblastoma. J Genet. 2009;88:517–27.

    Article  CAS  PubMed  Google Scholar 

  14. Sage C, Huang M, Vollrath M, Brown M, Hinds P, Corey D, et al. Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proc Natl Acad Sci U S A. 2006;103:7345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weber T, Corbett M, Chow L, Valentine M, Baker S, Zuo J. Rapid cell-cycle reentry and cell death after acute inactivation of the retinoblastoma gene product in postnatal cochlear hair cells. Proc Natl Acad Sci U S A. 2008;105:781–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu N, Chen Y, Wang Z, Chen G, Lin Q, Chen Z, et al. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein. Biochem Biophys Res Commun. 2013;430:700–5.

    Article  CAS  PubMed  Google Scholar 

  17. Christie K, Krishnan A, Martinez J, Purdy K, Singh B, Eaton S, et al. Enhancing adult nerve regeneration through the knockdown of retinoblastoma protein. Nat Commun. 2014;5:3670.

    Article  CAS  PubMed  Google Scholar 

  18. Bradley K, Scatizzi JC, Fiore S, Shamiyeh E, Koch AE, Firestein GS, Gorges LL, Kuntsman K, Pope RM, Moore TL, Han J, Perlman H. Retinoblastoma suppression of matrix metalloproteinase 1, but not interleukin-6, through a p38-dependent pathway in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2004;50:78–87.

    Article  CAS  PubMed  Google Scholar 

  19. Nonomura Y, Nagasaka K, Hagiyama H, Sekine C, Nanki T, Tamamori-Adachi M, Miyasaka N, Kohsaka H. Direct modulation of rheumatoid inflammatory mediator expression in retinoblastoma protein-dependent and -independent pathways by cyclin-dependent kinase 4/6. Arthritis Rheum. 2006;54:2074–83.

    Article  CAS  PubMed  Google Scholar 

  20. Féliers D, Frank MA, Riley DJ. Activation of cyclin D1-Cdk4 and Cdk4-directed phosphorylation of RB protein in diabetic mesangial hypertrophy. Diabetes. 2002;51:3290–9.

    Article  PubMed  Google Scholar 

  21. Matlashewski G, Lamb P, Pim D, Peacock J, Crawford L, Benchimol S. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 1984;3:3257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Isobe M, Emanuel B, Givol D, Oren M, Croce C. Localization of gene for human p53 tumour antigen to band 17p13. Nature. 1986;320:84–5.

    Article  CAS  PubMed  Google Scholar 

  23. Kern S, Kinzler K, Bruskin A, Jarosz D, Friedman P, Prives C, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991;252:1708–11.

    Article  CAS  PubMed  Google Scholar 

  24. McBride O, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A. 1986;83:130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene. 1999;18:7621–36.

    Article  CAS  PubMed  Google Scholar 

  26. Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 1998;17:4668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Larsen S, Yokochi T, Isogai E, Nakamura Y, Ozaki T, Nakagawara A. LMO3 interacts with p53 and inhibits its transcriptional activity. Biochem Biophys Res Commun. 2010;392:252–7.

    Article  CAS  PubMed  Google Scholar 

  28. Harms K, Chen X. The C terminus of p53 family proteins is a cell fate determinant. Mol Cell Biol. 2005;25:2014–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mraz M, Malinova K, Kotaskova J, Pavlova S, Tichy B, Malcikova J, et al. MiR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia. 2009;23:1159–63.

    Article  CAS  PubMed  Google Scholar 

  30. Dolezalova D, Mraz M, Barta T, et al. MicroRNAs regulate p21Waf1/Cip1 protein expression and the DNA damage response in human embryonic stem cells. Stem Cells. 2012;7:1362–72.

    Article  CAS  Google Scholar 

  31. Bates S, Phillips A, Clark P, Stott F, Peters G, Ludwig R, et al. p14ARF links the tumour suppressors RB and p53. Nature. 1998;395:124–5.

    Article  CAS  PubMed  Google Scholar 

  32. Naqshe Zahra S, Khattak NA, Mir A. Comparative modeling and docking studies of p16ink4/cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1. Theor Biol Med Model 2013; 10: 1.

    Article  CAS  PubMed Central  Google Scholar 

  33. Treanor L, Bellamy C, Harrison DJ, Prost S. Independent regulation of P53 stabilisation and activation after Rb deletion in primary epithelial cells. Int J Oncol. 2010;37:31–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yap DB, Hsieh JK, Chan FS, Lu X. mdm2: a bridge over the two tumour suppressors, p53 and Rb. Oncogene. 1999;18:7681–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh JK, Chan FS, O’Connor DJ, Mittnacht S, Zhong S, Lu X. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell. 1999;3:181–93.

    Article  CAS  PubMed  Google Scholar 

  36. Hu W, Feng Z, Teresky A, Levine A. p53 regulates maternal reproduction through LIF. Nature. 2007;450:721–4.

    Article  CAS  PubMed  Google Scholar 

  37. Cui R, Widlund H, Feige E, Lin J, Wilensky D, Igras V, et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 2007;128:853–64.

    Article  CAS  PubMed  Google Scholar 

  38. Murase D, Hachiya A, Amano Y, Ohuchi A, Kitahara T, Takema Y. The essential role of p53 in hyperpigmentation of the skin via regulation of paracrine melanogenic cytokine receptor signaling. J Biol Chem. 2009;284:4343–53.

    Article  CAS  PubMed  Google Scholar 

  39. Hock A, Vigneron A, Carter S, Ludwig R. Vousden K (2011). Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J. 2011;30:4921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005;123:773–86.

    Article  CAS  PubMed  Google Scholar 

  41. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 2010;140:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Chung HJ, Vogt M, Jin Y, Malide D, et al. JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J. 2011;30:846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, et al. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 2007;26:976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hock AK, Vigneron AM, Carter S, Ludwig RL, Vousden KH. Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J. 2011;30:4921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luo J, Lu Z, Lu X, Chen L, Cao J, Zhang S, Ling Y, Zhou X. OTUD5 regulates p53 stability by deubiquitinating p53. PLoS One. 2013;8:e77682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102:703–10.

    Article  CAS  PubMed  Google Scholar 

  47. Hollstein M, Sidransky D, Vogelstein B, Harris C. p53 mutations in human cancers. Science. 1991;253:49–53.

    Article  CAS  PubMed  Google Scholar 

  48. Yang L, Zhou Y, Li Y, Zhou J, Wu Y, Cui Y, Yang G, Hong Y. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett. 2015;357:520–6.

    Article  CAS  PubMed  Google Scholar 

  49. Cooks T, Harris CC. p53 mutations and inflammation-associated cancer are linked through TNF signaling. Mol Cell. 2014;56:611–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Di Minin G, Bellazzo A, Dal Ferro M, Chiaruttini G, Nuzzo S, Bicciato S, Piazza S, Rami D, Bulla R, Sommaggio R, Rosato A, Del Sal G, Collavin L. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol Cell. 2014;56:617–29.

    Article  PubMed  CAS  Google Scholar 

  51. Weissmueller S, Manchado E, Saborowski M, Morris JP 4th, Wagenblast E, Davis CA, Moon SH, Pfister NT, Tschaharganeh DF, Kitzing T, Aust D, Markert EK, Wu J, Grimmond SM, Pilarsky C, Prives C, Biankin AV, Lowe SW. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell. 2014;157:382–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tyner S, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature. 2002;415:45–53.

    Article  CAS  PubMed  Google Scholar 

  53. Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal. 2013;18:1906–19.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang DY, Wang HJ, Tan YZ. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS One. 2011;6:e21397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ugalde AP, Ramsay AJ, de la Rosa J, Varela I, Mariño G, Cadiñanos J, Lu J, Freije JM, López-Otín C. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J. 2011;30:2219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pearson S, Jia H, Kandachi K. China approves first gene therapy. Nat Biotechnol. 2004;22:3–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Angeletti P, Zhang L, Wood C. (2008). The viral etiology of AIDS-associated malignancies. Adv Pharmacol. 2008;56:509–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jacobs M, Harrison S. Structure of an IkappaBalpha/NF-kappaB complex. Cell. 1998;95:749–58.

    Article  CAS  PubMed  Google Scholar 

  59. Verma I, Stevenson J, Schwarz E, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995;9:2723–35.

    Article  CAS  PubMed  Google Scholar 

  60. Cabannes E, Khan G, Aillet F, Jarrett R. Hay R (1999). Mutations in the IkBα gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene. 1999;18:3063–70.

    Article  CAS  PubMed  Google Scholar 

  61. Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25:6680–4.

    Article  CAS  PubMed  Google Scholar 

  62. Brasier AR. The NF-κB regulatory network. Cardiovasc Toxicol. 2006;6:111–30.

    Article  CAS  PubMed  Google Scholar 

  63. Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.

    Article  CAS  PubMed  Google Scholar 

  64. Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. Synapse. 2000;35:151–9.

    Article  CAS  PubMed  Google Scholar 

  65. Kaltschmidt B, Ndiaye D, Korte M, Pothion S, Arbibe L, Prüllage M, Pfeiffer J, Lindecke A, Staiger V, Israël A, Kaltschmidt C, Mémet S. NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase a/CREB signaling. Mol Cell Biol. 2006;26:2936–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang J, Fu XQ, Lei WL, Wang T, Sheng AL, Luo ZG. Nuclear factor kappaB controls acetylcholine receptor clustering at the neuromuscular junction. J Neurosci. 2010;30:11104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boersma MC, Dresselhaus EC, De Biase LM, Mihalas AB, Bergles DE, Meffert MK. A requirement for nuclear factor-{kappa}B in developmental and plasticity-associated synaptogenesis. J Neurosci. 2011;31:5414–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gutierrez H, Hale VA, Dolcet X, Davies A. NF-kappaB signalling regulates the growth of neural processes in the developing PNS and CNS. Development. 2005;132:1713–26.

    Article  CAS  PubMed  Google Scholar 

  69. Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature. 2006;440:1054–9.

    Article  CAS  PubMed  Google Scholar 

  70. Beattie EC, David Stellwagen D, Morishita W, Jacqueline C, Bresnahan JC, Ha BK, Zastrow MV, Beattie MS, Malenka RC. Control of synaptic strength by glial TNFα. Science. 2002;295:2282–5.

    Article  CAS  PubMed  Google Scholar 

  71. Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, Kang R, Lotze MT, Billiar TR, Wang H, Cao L, Tang D. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 2014;5:4436.

    Article  CAS  PubMed  Google Scholar 

  72. Yanai H, Matsuda A, An J, Koshiba R, Nishio J, Negishi H, Ikushima H, Onoe T, Ohdan H, Yoshida N, Taniguchi T. Conditional ablation of HMGB1 in mice reveals its protective function against endotoxemia and bacterial infection. Proc Natl Acad Sci U S A. 2013;110:20699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang M, Cao L, Xie M, Yu Y, Kang R, Yang L, Zhao M, Tang D. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem Pharmacol. 2013;86:410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu Z, Chang Y, Zhang J, Huang X, Jiang J, Li S, Wang Z. Magnesium deficiency promotes secretion of high-mobility group box 1 protein from lipopolysaccharide-activated macrophages in vitro. J Surg Res. 2013;180:310–6.

    Article  CAS  PubMed  Google Scholar 

  75. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ, Tracey KJ, Ulloa L. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10:1216–21.

    Article  CAS  PubMed  Google Scholar 

  76. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.

    Article  CAS  PubMed  Google Scholar 

  77. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R, Kalis M, Levrero M, Strano S, Gorgoulis VG, Rotter V, Blandino G, Oren M. Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res. 2007;67:2396–401.

    Article  CAS  PubMed  Google Scholar 

  78. Firestein GS, Nguyen K, Aupperle KR, Yeo M, Boyle DL, Zvaifler NJ. Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am J Pathol. 1996;149:2143–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yao Q, Wang S, Glorioso JC, Evans CH, Robbins PD, Ghivizzani SC, Oligino TJ. Gene transfer of p53 to arthritic joints stimulates synovial apoptosis and inhibits inflammation. Mol Ther. 2001;3:901–10.

    Article  CAS  PubMed  Google Scholar 

  80. Migita K, Tanaka F, Yamasaki S, Shibatomi K, Ida H, Kawakami A, Aoyagi T, Kawabe Y, Eguchi K. Regulation of rheumatoid synoviocyte proliferation by endogenous p53 induction. Clin Exp Immunol. 2001;126:334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, Zvaifler NJ, Green DR, Firestein GS. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol. 2002;160:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, David JR, Bucala R, Morand EF. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis Rheum. 2003;48:1881–9.

    Article  CAS  PubMed  Google Scholar 

  83. Simelyte E, Rosengren S, Boyle DL, Corr M, Green DR, Firestein GS. Regulation of arthritis by p53: critical role of adaptive immunity. Arthritis Rheum. 2005;52:1876–84.

    Article  CAS  PubMed  Google Scholar 

  84. Leech M, Xue JR, Dacumos A, Hall P, Santos L, Yang Y, Li M, Kitching AR, Morand EF. The tumour suppressor gene p53 modulates the severity of antigen-induced arthritis and the systemic immune response. Clin Exp Immunol. 2008;152:345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin J, Huo R, Xiao L, Zhu X, Xie J, Sun S, He Y, Zhang J, Sun Y, Zhou Z, Wu P, Shen B, Li D, Li N. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:49–59.

    Article  CAS  PubMed  Google Scholar 

  86. Park JS, Lim MA, Cho ML, Ryu JG, Moon YM, Jhun JY, Byun JK, Kim EK, Hwang SY, Ju JH, Kwok SK, Kim HY. p53 controls autoimmune arthritis via STAT-mediated regulation of the Th17 cell/Treg cell balance in mice. Arthritis Rheum. 2013;65:949–59.

    Article  CAS  PubMed  Google Scholar 

  87. Gu Z, Jiang J, Tan W, Xia Y, Cao H, Meng Y, Da Z, Liu H, Cheng C. p53/p21 pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Clin Dev Immunol. 2013;2013:134243.

    PubMed  PubMed Central  Google Scholar 

  88. Gu Z, Tan W, Feng G, Meng Y, Shen B, Liu H, Cheng C. Wnt/β-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway. Mol Cell Biochem. 2014;387:27–37.

    Article  CAS  PubMed  Google Scholar 

  89. Allam R, Sayyed SG, Kulkarni OP, Lichtnekert J, Anders HJ. Mdm2 promotes systemic lupus erythematosus and lupus nephritis. J Am Soc Nephrol. 2011;22:2016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK, Ashwell JD, Fornace AJ Jr. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity. 2002;16:499–508.

    Article  CAS  PubMed  Google Scholar 

  91. Herkel J, Mimran A, Erez N, Kam N, Lohse AW, Märker-Hermann E, Rotter V, Cohen IR. Autoimmunity to the p53 protein is a feature of systemic lupus erythematosus (SLE) related to anti-DNA antibodies. J Autoimmun. 2001;17:63–9.

    Article  CAS  PubMed  Google Scholar 

  92. Herkel J, Erez-Alon N, Mimran A, Wolkowicz R, Harmelin A, Ruiz P, Rotter V, Cohen IR. Systemic lupus erythematosus in mice, spontaneous and induced, is associated with autoimmunity to the C-terminal domain of p53 that recognizes damaged DNA. Eur J Immunol. 2000;30:977–84.

    Article  CAS  PubMed  Google Scholar 

  93. Chu EC, Tarnawski AS. PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monitor. 2004;10:RA 235–41.

    CAS  Google Scholar 

  94. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rhei E, Kang L, Bogomolniy F, Federici MG, Borgen PI, Boyd J. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res. 1997;57:3657–9.

    CAS  PubMed  Google Scholar 

  96. Cairns P, Evron E, Okami K, Halachmi N, Esteller M, Herman JG, Bose S, Wang SI, Parsons R, Sidransky D. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene. 1998;16:3215–8.

    Article  CAS  PubMed  Google Scholar 

  97. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A. 1999;96:1563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nelen MR, van Staveren WC, Peeters EA, Hassel MB, Gorlin RJ, Hamm H, Lindboe CF, Fryns JP, Sijmons RH, Woods DG, Mariman EC, Padberg GW, Kremer H. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet. 1997;6:1383–7.

    Article  CAS  PubMed  Google Scholar 

  99. Tzortzatos G, Aravidis C, Lindblom A, Mints M, Tham E. Screening for germline phosphatase and tensin homolog-mutations in suspected Cowden syndrome and Cowden syndrome-like families among uterine cancer patients. Oncol Lett. 2015;9:1782–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pilarski R, Eng C. Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J Med Genetics. 2004;41:323–6.

    Article  CAS  Google Scholar 

  101. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.

    Article  CAS  PubMed  Google Scholar 

  102. Lynch ED, Ostermeyer EA, Lee MK, Arena JF, Ji H, Dann J, Swisshelm K, Suchard D, MacLeod PM, Kvinnsland S, Gjertsen BT, Heimdal K, Lubs H, Møller P, King MC. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. Am J Hum Genet. 1997;61:1254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sakai A, Thieblemont C, Wellmann A, Jaffe ES, Raffeld M. PTEN gene alterations in lymphoid neoplasms. Blood. 1998;92:3410–5.

    Article  CAS  PubMed  Google Scholar 

  104. Minobe K, Bando K, Fukino K, Soma S, Kasumi F, Sakamoto G, Furukawa K, Higuchi K, Onda M, Nakamura Y, Emi M. Somatic mutation of the PTEN/MMAC1 gene in breast cancers with microsatellite instability. Cancer Lett. 1999;144:9–16.

    Article  CAS  PubMed  Google Scholar 

  105. Liu J, Visser-Grieve S, Boudreau J, Yeung B, Lo S, Chamberlain G, Yu F, Sun T, Papanicolaou T, Lam A, Yang X, Chin-Sang I. Insulin activates the insulin receptor to downregulate the PTEN tumour suppressor. Oncogene. 2014;33:3878–85.

    Article  CAS  PubMed  Google Scholar 

  106. Halachmi N, Halachmi S, Evron E, Cairns P, Okami K, Saji M, Westra WH, Zeiger MA, Jen J, Sidransky D. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer. 1998;23:239–43.

    Article  CAS  PubMed  Google Scholar 

  107. Duman BB, Kara OI, Uğuz A, Ates BT. Evaluation of PTEN, PI3K, MTOR, and KRAS expression and their clinical and prognostic relevance to differentiated thyroid carcinoma. Contemp Oncol (Pozn). 2014;18:234–40.

    Google Scholar 

  108. Charles RP, Silva J, Iezza G, Phillips WA, McMahon M. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis. Mol Cancer Res. 2014;12:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kurose K, Bando K, Fukino K, Sugisaki Y, Araki T, Emi M. Somatic mutations of the PTEN/MMAC1 gene in fifteen Japanese endometrial cancers: evidence for inactivation of both alleles. Jpn J Cancer Res. 1998;89:842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. El-Mansi MT, Williams AR. Evaluation of PTEN expression in cervical adenocarcinoma by tissue microarray. Int J Gynecol Cancer. 2006;16:1254–60.

    Article  PubMed  Google Scholar 

  111. Napoli E, Ross-Inta C, Wong S, Hung C, Fujisawa Y, Sakaguchi D, et al. Mitochondrial dysfunction in Pten haplo-insufficient mice with social deficits and repetitive behavior: interplay between Pten and p53. PLoS One. 2012;7:e42504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sperow M, Berry RB, Bayazitov IT, Zhu G, Baker SJ, Zakharenko SS. Phosphatase and tensin homologue (PTEN) regulates synaptic plasticity independently of its effect on neuronal morphology and migration. J Physiol. 2012;590(Pt 4):777–92.

    Article  CAS  PubMed  Google Scholar 

  113. Takeuchi K, Gertner MJ, Zhou J, Parada LF, Bennett MV, Zukin RS. Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism. Proc Natl Acad Sci U S A. 2013;110:4738–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Blair PJ, Harvey J. PTEN: a new player controlling structural and functional synaptic plasticity. J Physiol. 2012;590(Pt 5):1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, Pretorius J, Tsao MS, Shannon P, Bolon B, Ivy GO, Mak TW. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet. 2001;29:396–403.

    Article  CAS  PubMed  Google Scholar 

  116. Chalhoub N, Zhu G, Zhu X, Baker SJ. Cell type specificity of PI3K signaling in Pdk1- and Pten-deficient brains. Genes Dev. 2009;23:1619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Moult PR, Cross A, Santos SD, Carvalho AL, Lindsay Y, Connolly CN, Irving AJ, Leslie NR, Harvey J. Leptin regulates AMPA receptor trafficking via PTEN inhibition. J Neurosci. 2010;30:4088–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jurado S, Benoist M, Lario A, Knafo S, Petrok CN, Esteban JA. PTEN is recruited to the postsynaptic terminal for NMDA receptor-dependent long-term depression. EMBO J. 2010;29:2827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harvey J. Leptin: a diverse regulator of neuronal function. J Neurochem. 2007;100:307–13.

    Article  CAS  PubMed  Google Scholar 

  120. Shanley LJ, Irving AJ, Harvey J. Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci. 2001;21:RC186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neurosci. 2002;113:607–15.

    Article  CAS  Google Scholar 

  122. Durakoglugil M, Irving AJ, Harvey J. Leptin induces a novel form of NMDA receptor-dependent long-term depression. J Neurochem. 2005;95:396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Moult PR, Milojkovic B, Harvey J. Leptin reverses long-term potentiation at hippocampal CA1 synapses. J Neurochem. 2009;108:685–96.

    Article  CAS  PubMed  Google Scholar 

  124. Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci. 2004;5:952–62.

    Article  CAS  PubMed  Google Scholar 

  125. Ashwood P, Kwong C, Hansen R, Hertz-Picciotto I, Croen L, Krakowiak P, Walker W, Pessah IN, Van de Water J. Brief report: plasma leptin levels are elevated in autism: association with early onset phenotype? J Autism Dev Disord. 2008;38:169–75.

    Article  PubMed  Google Scholar 

  126. Blardi P, de Lalla A, Ceccatelli L, Vanessa G, Auteri A, Hayek J. Variations of plasma leptin and adiponectin levels in autistic patients. Neurosci Lett. 2010;479:54–7.

    Article  CAS  PubMed  Google Scholar 

  127. Blardi P, de Lalla A, D’Ambrogio T, Vonella G, Ceccatelli L, Auteri A, Hayek J. Long-term plasma levels of leptin and adiponectin in Rett syndrome. Clin Endocrinol. 2009;70:706–9.

    Article  CAS  Google Scholar 

  128. Rodrigues DH, Rocha NP, Sousa LF, Barbosa IG, Kummer A, Teixeira AL. Changes in adipokine levels in autism spectrum disorders. Neuropsychobiology. 2014;69:6–10.

    Article  CAS  PubMed  Google Scholar 

  129. Al-Zaid FS, Alhader AA, Al-Ayadhi LY. Altered ghrelin levels in boys with autism: a novel finding associated with hormonal dysregulation. Sci Rep. 2014;4:6478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Fujimiya M, Katsuura G, Makino S, Fujino MA, Kasuga M. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology. 2001;74:143–7.

    Article  CAS  PubMed  Google Scholar 

  131. Sato T, Fukue Y, Teranishi H, Yoshida Y, Kojima M. Molecular forms of hypothalamic ghrelin and its regulation by fasting and 2-deoxy-d-glucose administration. Endocrinology. 2005;146:2510–6.

    Article  CAS  PubMed  Google Scholar 

  132. DeLong GR. Autism, amnesia, hippocampus, and learning. Neurosci Biobehav Rev. 1992;16:63–70.

    Article  CAS  PubMed  Google Scholar 

  133. Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschöp MH, Horvath TL. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9:381–8.

    Article  CAS  PubMed  Google Scholar 

  134. Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol. 2009;19:231–4.

    Article  CAS  PubMed  Google Scholar 

  135. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond). 2011;8:34.

    Article  PubMed Central  Google Scholar 

  136. Shimmura C, Suda S, Tsuchiya KJ, Hashimoto K, Ohno K, Matsuzaki H, Iwata K, Matsumoto K, Wakuda T, Kameno Y, Suzuki K, Tsujii M, Nakamura K, Takei N, Mori N. Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLoS One. 2011;6:e25340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pfluger PT, Kirchner H, Günnel S, Schrott B, Perez-Tilve D, Fu S, Benoit SC, Horvath T, Joost HG, Wortley KE, Sleeman MW, Tschöp MH. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am J Physiol Gastrointest Liver Physiol. 2008;294:G610–8.

    Article  CAS  PubMed  Google Scholar 

  138. Gail Williams P, Sears LL, Allard A. Sleep problems in children with autism. J Sleep Res. 2004;13:265–8.

    Article  CAS  PubMed  Google Scholar 

  139. Hackler J. Treatment of compulsive eating disorders in an autistic girl by combining behavior therapy and pharmacotherapy. Case report Z Kinder Jugendpsychiatr. 1986;14:220–7.

    CAS  PubMed  Google Scholar 

  140. Zhao Z, Sakata I, Okubo Y, Koike K, Kangawa K, Sakai T. Gastric leptin, but not estrogen and somatostatin, contributes to the elevation of ghrelin mRNA expression level in fasted rats. J Endocrinol. 2008;196:529–38.

    Article  CAS  PubMed  Google Scholar 

  141. Napoli E, Ross-Inta C, Wong S, Hung C, Fujisawa Y, Sakaguchi D, Angelastro J, Omanska-Klusek A, Schoenfeld R, Giulivi C. Mitochondrial dysfunction in Pten Haplo-insufficient mice with social deficits and repetitive behavior: interplay between Pten and p53. PLoS One. 2012;7:e42504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell. 2012;149:49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Araghi-Niknam M, Fatemi SH. Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects. Cell Mol Neurobiol. 2003;23:945–52.

    Article  CAS  PubMed  Google Scholar 

  144. Fatemi SH, Halt AR, Stary JM, Realmuto GM, Jalali-Mousavi M. Reduction in anti-apoptotic protein Bcl-2 in autistic cerebellum. Neuroreport. 2001;12:929–33.

    Article  CAS  PubMed  Google Scholar 

  145. Fatemi SH, Stary JM, Halt AR, Realmuto GR. Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord. 2001;31:529–35.

    Article  CAS  PubMed  Google Scholar 

  146. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  CAS  PubMed  Google Scholar 

  148. Di Cristofano A, De Acetis M, Koff A, CordonCardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001;27:222–4.

    Article  PubMed  CAS  Google Scholar 

  149. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100:387–90.

    Article  PubMed  Google Scholar 

  150. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW. Regulation of PTEN transcription by p53. Mol Cell. 2001;8:317–25.

    Article  CAS  PubMed  Google Scholar 

  151. Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem. 2002;277:5484–9.

    Article  CAS  PubMed  Google Scholar 

  152. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001;3:973–82.

    Article  CAS  PubMed  Google Scholar 

  153. Freeman DJ, Li AG, Wei G, Li H-H, Kertesz N, Lesche R, Whale AD, MartinezDiaz H, Rozengurt N, Cardiff RD, et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell. 2003;3:117–30.

    Article  CAS  PubMed  Google Scholar 

  154. Trotman LC, Pandolfi PP. PTEN and p53: who will get the upper hand? Cancer Cell. 2003;3:97–9.

    Article  CAS  PubMed  Google Scholar 

  155. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet. 2002;32:355–7.

    Article  CAS  PubMed  Google Scholar 

  156. Sheikh AM, Li X, Wen G, Tauqeer Z, Brown WT, Malik M. Cathepsin D and apoptosis related proteins are elevated in the brain of autistic subjects. Neuroscience. 2010;165:363–70.

    Article  CAS  PubMed  Google Scholar 

  157. Sheikh AM, Malik M, Wen G, Chauhan A, Chauhan V, Gong CX, Liu F, Brown WT, Li X. BDNF-Akt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. J Neurosci Res. 2010;88:2641–7.

    CAS  PubMed  Google Scholar 

  158. Yang K, Sheikh AM, Malik M, Wen G, Zou H, Brown WT, Li X. Upregulation of Ras/Raf/ERK1/2 signaling and ERK5 in the brain of autistic subjects. Genes Brain Behav. 2011;10:834–43.

    Article  CAS  PubMed  Google Scholar 

  159. Zou H, Yu Y, Sheikh AM, Malik M, Yang K, Wen G, Chadman KK, Brown WT, Li X. Association of upregulated Ras/Raf/ERK1/2 signaling with autism. Genes Brain Behav. 2011;10:615–24.

    Article  CAS  PubMed  Google Scholar 

  160. Yang K, Cao F, Sheikh AM, Malik M, Wen G, Wei H, Ted Brown W, Li X. Up-regulation of Ras/Raf/ERK1/2 signaling impairs cultured neuronal cell migration, neurogenesis, synapse formation, and dendritic spine development. Brain Struct Funct. 2013;218:669–82.

    Article  CAS  PubMed  Google Scholar 

  161. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci. 2010;13:1075–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Thottassery JV, Sun Y, Westbrook L, Rentz SS, Manuvakhova M, Qu Z, Samuel S, Upshaw R, Cunningham A, Kern FG. Prolonged extracellular signal-regulated kinase 1/2 activation during fibroblast growth factor 1- or heregulin beta1-induced antiestrogen-resistant growth of breast cancer cells is resistant to mitogen-activated protein/extracellular regulated kinase kinase inhibitors. Cancer Res. 2004;64:4637–47.

    Article  CAS  PubMed  Google Scholar 

  163. Hao XK, Wu W, Wang CX, Xie GB, Li T, Wu HM, Huang LT, Zhou ML, Hang CH, Shi JX. Ghrelin alleviates early brain injury after subarachnoid hemorrhage via the PI3K/Akt signaling pathway. Brain Res. 2014;1587:15–22.

    Article  CAS  PubMed  Google Scholar 

  164. Waseem T, Duxbury M, Ashley SW, Robinson MK. Ghrelin promotes intestinal epithelial cell proliferation through PI3K/Akt pathway and EGFR trans-activation both converging to ERK 1/2 phosphorylation. Peptides. 2014;52:113–21.

    Article  CAS  PubMed  Google Scholar 

  165. Chen X, Chen Q, Wang L, Li G. Ghrelin induces cell migration through GHSR1a-mediated PI3K/Akt/eNOS/NO signaling pathway in endothelial progenitor cells. Metabolism. 2013;62:743–52.

    Article  CAS  PubMed  Google Scholar 

  166. Wen R, Hu S, Xiao Q, Han C, Gan C, Gou H, Liu H, Li L, Xu H, He H, Wang J. Leptin exerts proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway. J Steroid Biochem Mol Biol. 2015;149:70–9.

    Article  CAS  PubMed  Google Scholar 

  167. Ting CC, Hargrove ME. Activation of natural killer-derived cytotoxic T lymphocytes. I. Regulation by macrophage and prostaglandins. J Immunol. 1983;131:1734–41.

    CAS  PubMed  Google Scholar 

  168. Parhar RS, Lala PK. Prostaglandin E2-mediated inactivation of various killer lineage cells by tumor-bearing host macrophages. J Leukoc Biol. 1988;44:474–84.

    Article  CAS  PubMed  Google Scholar 

  169. Adamson GM, Carlson TJ, Billings RE. Phospholipase A2 activation in cultured mouse hepatocytes exposed to tumor necrosis factor-alpha. J Biochem Toxicol. 1994;9:181–90.

    Article  CAS  PubMed  Google Scholar 

  170. Liu SJ, McHowat J. Stimulation of different phospholipase A2 isoforms by TNF-alpha and IL-1beta in adult rat ventricular myocytes. Am J Phys. 1998;275:H1462–72.

    CAS  Google Scholar 

  171. Mayer K, Schmidt R, Muhly-Reinholz M, Bögeholz T, Gokorsch S, Grimminger F, Seeger W. In vitro mimicry of essential fatty acid deficiency in human endothelial cells by TNF alpha impact of omega-3 versus omega-6 fatty acids. J Lipid Res. 2002;43:944–51.

    CAS  PubMed  Google Scholar 

  172. Medeiros R, Figueiredo CP, Pandolfo P, Duarte FS, Prediger RD, Passos GF, Calixto JB. The role of TNF-alpha signaling pathway on COX-2 upregulation and cognitive decline induced by beta-amyloid peptide. Behav Brain Res. 2010;209:165–73.

    Article  CAS  PubMed  Google Scholar 

  173. Vila-del Sol V, Fresno M. Involvement of TNF and NF-kappa B in the transcriptional control of cyclooxygenase-2 expression by IFN-gamma in macrophages. J Immunol. 2005;174:2825–33.

    Article  CAS  PubMed  Google Scholar 

  174. Huang WC, Chen JJ, Inoue H, Chen CC. Tyrosine phosphorylation of I-kappa B kinase alpha/beta by protein kinase C-dependent c-Src activation is involved in TNF-alpha-induced cyclooxygenase-2 expression. J Immunol. 2003;170:4767–75.

    Article  CAS  PubMed  Google Scholar 

  175. Chen CC, Sun YT, Chen JJ, Chiu KT. TNF-alpha-induced cyclooxygenase-2 expression in human lung epithelial cells: involvement of the phospholipase C-gamma 2, protein kinase C-alpha, tyrosine kinase, NF-kappa B-inducing kinase, and I-kappa B kinase 1/2 pathway. J Immunol. 2000;165:2719–28.

    Article  CAS  PubMed  Google Scholar 

  176. Haliday EM, Ramesha CS, Ringold G. TNF induces c-fos via a novel pathway requiring conversion of arachidonic acid to a lipoxygenase metabolite. EMBO J. 1991;10:109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Montuschi P, Tringali G, Currò D, Ciabattoni G, Parente L, Preziosi P, Navarra P. Evidence that interleukin-1 beta and tumor necrosis factor inhibit gastric fundus motility via the 5-lipoxygenase pathway. Eur J Pharmacol. 1994;252:253–60.

    Article  CAS  PubMed  Google Scholar 

  178. Monis B, Eynard AR. Abnormal cell proliferation and differentiation and urothelial tumorigenesis in essential fatty acid deficient (EFAD) rats. Prog Lipid Res. 1981;20:691–703.

    Article  CAS  PubMed  Google Scholar 

  179. Monis B, Eynard AR. Incidence of urothelial tumors in rats deficient in essential fatty acids. J Natl Cancer Inst. 1980;64:73–9.

    CAS  PubMed  Google Scholar 

  180. Liepkalns VA, Spector AA. Alteration of the fatty acid composition of Ehrlich ascites tumor cell lipids. Biochem Biophys Res Commun. 1975;63:1043–7.

    Article  CAS  PubMed  Google Scholar 

  181. Reitz RC, Thompson JA, Morris HP. Mitochondrial and microsomal phospholipids of Morris hepatoma 77771. Cancer Res. 1977;37:561–7.

    CAS  PubMed  Google Scholar 

  182. Dunbar LM, Bailey JM. Enzyme deletions and essential fatty acid metabolism in cultured cells. J Biol Chem. 1975;250:1152–3.

    CAS  Google Scholar 

  183. Morton RE, Hartz JW, Reitz RC, Waite BM, Morris H. The acyl-CoA desaturases of microsomes from rat liver and the Morris 7777 hepatoma. Biochim Biophys Acta. 1979;573:321–31.

    Article  CAS  PubMed  Google Scholar 

  184. Nassar BA, Das UN, Huang YS, Ells G, Horrobin DF. The effect of chemical hepatocarcinogenesis on liver phospholipid composition in rats fed n-6 and n-3 fatty acid-supplemented diets. Proc Soc Exp Biol Med. 1992;199:365–8.

    Article  CAS  PubMed  Google Scholar 

  185. Das UN. Essential fatty acids enhance free radical generation and lipid peroxidation to induce apoptosis of tumor cells. Clin Lipidol. 2011;6:463–89.

    Article  CAS  Google Scholar 

  186. Tateishi N, Kakutani S, Kawashima H, Shibata H, Morita I. Dietary supplementation of arachidonic acid increases arachidonic acid and lipoxin A4 contents in colon, but does not affect severity or prostaglandin E2 content in murine colitis model. Lipids Health Dis. 2014;13:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Tateishi N, Kaneda Y, Kakutani S, Kawashima H, Shibata H, Morita I. Dietary supplementation with arachidonic acid increases arachidonic acid content in paw, but does not affect arthritis severity or prostaglandin E2content in rat adjuvant-induced arthritis model. Lipids Health Dis. 2015;14:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Chen Y, Hao H, He S, Cai L, Li Y, Hu S, Ye D, Hoidal J, Wu P, Chen X. Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Mol Cancer Ther. 2010;9:2164–74.

    Article  CAS  PubMed  Google Scholar 

  189. Hao H, Liu M, Wu P, Cai L, Tang K, Yi P, Li Y, Chen Y, Ye D. Lipoxin A4 and its analog suppress hepatocellular carcinoma via remodeling tumor microenvironment. Cancer Lett. 2011;309:85–94.

    Article  CAS  PubMed  Google Scholar 

  190. Polavarapu S, Dwarakanath BS, Das UN. Differential action of polyunsaturated fatty acids and eicosanoids on bleomycin-induced cytotoxicity to neuroblastoma cells and lymphocytes. Arch Med Sci. 2018;14:207–29.

    Article  CAS  PubMed  Google Scholar 

  191. Polavarapu S, Mani AM, Gundala NK, Hari AD, Bathina S, Das UN. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro. PLoS One. 2014;9:e114766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Kim SH, Roszik J, Cho SN, Ogata D, Milton DR, Peng W, Menter DG, Ekmekcioglu S, Grimm EA. The COX2 effector microsomal PGE2 synthase 1 is a regulator of immunosuppression in cutaneous melanoma. Clin Cancer Res. 2019;25:1650–63.

    Article  PubMed  Google Scholar 

  193. Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A. 2017;114:1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kim SH, Hashimoto Y, Cho SN, Roszik J, Milton DR, Dal F, Kim SF, Menter DG, Yang P, Ekmekcioglu S, Grimm EA. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression. Pigment Cell Melanoma Res. 2016;29:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang J, Zhang L, Kang D, Yang D, Tang Y. Activation of PGE2/EP2 and PGE2/EP4 signaling pathways positively regulate the level of PD-1 in infiltrating CD8+ T cells in patients with lung cancer. Oncol Lett. 2018;15:552–8.

    PubMed  Google Scholar 

  196. Miao J, Lu X, Hu Y, Piao C, Wu X, Liu X, Huang C, Wang Y, Li D, Liu J. Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget. 2017;8:89802–10.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Chen JH, Perry CJ, Tsui YC, Staron MM, Parish IA, Dominguez CX, Rosenberg DW, Kaech SM. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med. 2015;21:327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sailaja P, Dwarakanath B, Das UN. Arachidonic acid activates extrinsic apoptotic pathway to enhance tumoricidal action of bleomycin against IMR-32 cells. Prostaglandins Leukot Essent Fatty Acids. 2018;132:16–22.

    Article  CAS  Google Scholar 

  199. Anasuya DH, Naidu VGM, Das UN. N-6 and n-3 fatty acids and their metabolites augment inhibitory action of doxorubicin on the proliferation of human neuroblastoma (IMR-32) cells by enhancing lipid peroxidation and suppressing Ras, Myc, and Fos. Biofactors. 2018;44:387–401.

    Article  CAS  Google Scholar 

  200. Anasuya DH, Naidu VGM, Das UN. Arachidonic and eicosapentaenoic acids induce oxidative stress to suppress proliferation of human glioma cells. Arch Med Sci. in press.

    Google Scholar 

  201. Baranov V, Nagaeva O, Hammarstrom S, Mincheva-Nilsson L. Lipids are a constituent of cytolytic granules. Histochem Cell Biol. 2000;114:167–71.

    Article  CAS  PubMed  Google Scholar 

  202. Viswanathan V, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hangauer MJ, Viswanathan V, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Das UN. Tumoricidal action of cis-unsaturated fatty acids and its relationship to free radicals and lipid peroxidation. Cancer Lett. 1991;56:235–43.

    Article  CAS  PubMed  Google Scholar 

  205. Kroemer G, Pouyssegur J. Tumor cell metabolism: Cancer’s Achilles’ hell. Cancer Cell. 2008;13:472–82.

    Article  CAS  PubMed  Google Scholar 

  206. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–4.

    Google Scholar 

  207. Merlo P, Frost B, Peng S, Yang YJ, Park PJ, Feany M. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A. 2014;111:18055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tang X, O’Reilly A, Asano M, Merrill JC, Yokoyama KK, Amar S. p53 peptide prevents LITAF-induced TNF-alpha-mediated mouse lung lesions and endotoxic shock. Curr Mol Med. 2011;11:439–52.

    Article  CAS  PubMed  Google Scholar 

  209. Wu XN, Ye YX, Niu JW, Li Y, Li X, You X, Chen H, Zhao LD, Zeng XF, Zhang FC, Tang FL, He W, Cao XT, Zhang X, Lipsky PE. Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci Transl Med. 2014;6:246ra99.

    Article  PubMed  CAS  Google Scholar 

  210. Stagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, Iliopoulos D, Boumpas DT. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis. 2011;70:1496–506.

    Article  CAS  PubMed  Google Scholar 

  211. Feng XJ, Liu SX, Wu C, Kang PP, Liu QJ, Hao J, Li HB, Li F, Zhang YJ, Fu XH, Zhang SB, Zuo LF. The PTEN/PI3K/Akt signaling pathway mediates HMGB1-induced cell proliferation by regulating the NF-κB/cyclin D1 pathway in mouse mesangial cells. Am J Physiol Cell Physiol. 2014;306:C1119–28.

    Article  CAS  PubMed  Google Scholar 

  212. Das UN. Interaction (a) between essential fatty acids, eicosanoids, cytokines, growth factors, and free radicals: relevance to new therapeutic strategies in rheumatoid arthritis and other collagen vascular diseases. Prostaglandins Leukot Essent Fatty Acids. 1991;44:201–10.

    Article  CAS  PubMed  Google Scholar 

  213. Das UN. Beneficial effect of eicosapentaenoic acid and docosahexaenoic acid in the management of systemic lupus erythematosus and its relationship to the cytokine network. Prostaglandins Leukot Essent Fatty Acids. 1994;51:207–13.

    Article  CAS  PubMed  Google Scholar 

  214. Das UN. Oxidants, anti-oxidants, essential fatty acids, eicosanoids, cytokines, gene/oncogene expression and apoptosis in systemic lupus erythematosus. J Assoc Physicians India. 1998;46:630–4.

    CAS  PubMed  Google Scholar 

  215. Sravan Kumar G, Das UN, Vijay Kumar K, Madhavi DNP, Tan BKH. Effect of n-6 and n-3 fatty acids on the proliferation and secretion of TNF and IL-2 by human lymphocytes in vitro. Nutrition Res. 1992;12:815–23.

    Article  Google Scholar 

  216. Sravan Kumar G, Das UN. Effect of prostaglandins and their precursors on the proliferation of human lymphocytes and their secretion of tumor necrosis factor and various interleukins. Prostaglandins Leukot Essent Fatty Acids. 1994;50:331–4.

    Article  Google Scholar 

  217. Madhavi N, Das UN, et al. Suppression of human T cell growth in vitro by cis-unsaturated fatty acids: relationship to free radicals and lipid peroxidation. Prostaglandins Leukot Essent Fatty Acids. 1994;51:33–40.

    Article  CAS  PubMed  Google Scholar 

  218. Krishna Mohan I, Das UN. Oxidant stress, anti-oxidants and essential fatty acids in systemic lupus erythematosus. Prostaglandins Leukot Essent Fatty Acids. 1997;56:193–8.

    Article  Google Scholar 

  219. Das UN. Lipoxins, resolvins, protectins, maresins and nitrolipids: connecting lipids, inflammation, and cardiovascular disease risk. Curr Cardiovasc Risk Rep. 2010;4:24–31.

    Article  Google Scholar 

  220. Das UN. Lipoxins as biomarkers of lupus and other inflammatory conditions. Lipids Health Dis. 2011;10:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Das UN. Radiation resistance, invasiveness and metastasis are inflammatory events that could be suppressed by lipoxin a(4). Prostaglandins Leukot Essent Fatty Acids. 2012;86:3–11.

    Article  CAS  PubMed  Google Scholar 

  222. Das UN. Lipoxins, resolvins, protectins, maresins and nitrolipids and their clinical implications with specific reference to cancer: part I. Clin Lipidol. 2013;8:437–63.

    Article  CAS  Google Scholar 

  223. Das UN. Lipoxins, resolvins, protectins, maresins and nitrolipids and their clinical implications with specific reference to diabetes mellitus and other diseases: part II. Clin Lipidol. 2013;8:465–80.

    Article  CAS  Google Scholar 

  224. Krishnamoorthy N, Burkett PR, Dalli J, Abdulnour RE, Colas R, Ramon S, Phipps RP, Petasis NA, Kuchroo VK, Serhan CN, Levy BD. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol. 2015;194:863–7.

    Article  CAS  PubMed  Google Scholar 

  225. Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2014;7:a016311.

    Article  PubMed  CAS  Google Scholar 

  226. Faragó N, Fehér LZ, Kitajka K, Das UN, Puskás LG. MicroRNA profile of polyunsaturated fatty acid treated glioma cells reveal apoptosis-specific expression changes. Lipids Health Dis. 2011;10:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Siddesha JM, Valente AJ, Yoshida T, Sakamuri SS, Delafontaine P, Iba H, Noda M, Chandrasekar B. Docosahexaenoic acid reverses angiotensin II-induced RECK suppression and cardiac fibroblast migration. Cell Signal. 2014;26:933–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Ghosh-Choudhury T, Mandal CC, Woodruff K, St Clair P, Fernandes G, Choudhury GG, Ghosh-Choudhury N. Fish oil targets PTEN to regulate NFkappaB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res Treat. 2009;118:213–28.

    Article  CAS  PubMed  Google Scholar 

  229. Vasudevan A, Yu Y, Banerjee S, Woods J, Farhana L, Rajendra SG, Patel A, Dyson G, Levi E, Maddipati KR, Majumdar AP, Nangia-Makker P. Omega-3 fatty acid is a potential preventive agent for recurrent colon cancer. Cancer Prev Res (Phila). 2014;7:1138–48.

    Article  CAS  Google Scholar 

  230. Das UN. Essential fatty acids and their metabolites as modulators of stem cell biology. Agro Food Ind Hi Tech. 2010;21:2–3.

    Google Scholar 

  231. Das UN. Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition. 2011;27:21–5.

    Article  CAS  PubMed  Google Scholar 

  232. Das UN. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer and metastasis. Cancer Metastasis Rev. 2011;30:311–24.

    Article  CAS  PubMed  Google Scholar 

  233. Fillmore N, Huqi A, Jaswal JS, Mori J, Paulin R, Haromy A, Onay-Besikci A, Ionescu L, Thébaud B, Michelakis E, Lopaschuk GD. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS One. 2015;10:e0120257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Katakura M, Hashimoto M, Okui T, Shahdat HM, Matsuzaki K, Shido O. Omega-3 polyunsaturated fatty acids enhance neuronal differentiation in cultured rat neural stem cells. Stem Cells Int. 2013;2013:490476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Lee SH, Kim MH, Han HJ. Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem cells: involvement of notch, Wnt, and HIF-1alpha. Am J Physiol Cell Physiol. 2009;297:C207–16.

    Article  CAS  PubMed  Google Scholar 

  236. Uversky VN, et al. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev. 2014;114:6844–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, Part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, U.N. (2020). Introduction to Genes, Oncogenes, and Anti-oncogenes. In: Molecular Biochemical Aspects of Cancer. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0741-1_1

Download citation

Publish with us

Policies and ethics