Skip to main content

Blending Established and New Perspectives on Choroid Plexus-CSF Dynamics

  • Chapter
  • First Online:
Role of the Choroid Plexus in Health and Disease

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Modern cerebrospinal fluid (CSF) physiologic investigation accelerated after World War II with the advent of radio-isotopes to quantify choroid plexus (CP) ion transport and CSF flow dynamics. Hugh Davson, Malcolm Segal, Michael Bradbury, Michael Pollay, Keasley Welch, Helen Cserr, John Pappenheimer, and colleagues, developed laboratory preparations to assess tracer uptake/release by CP and associated flow dynamics within the ventricular-brain system. This canonical research established several basic physiologic concepts: differences between CP and blood-brain barrier, CP as primary site of CSF formation, ependymal permeability, intimate CSF and brain interstitial fluid association, CSF sink action for excretion, and a quasi-lymphatic function of CSF flow/drainage to cervical lymph. Their seminal findings constitute a reliable foundation on which to build contemporary models of CP transport/CSF dynamics, including functional interaction with the newly-described glymphatic system. The 1980s–1990s provided research findings on CSF regulation by neurotransmitters and neuropeptides; also, many new pharmacologic agents were tested for controlling CSF formation. Over the past 2–3 decades, the advent/refinement of diverse immunohistochemical, neuroendocrine and molecular techniques has delineated the expression and function of basolateral and apical transporters at the blood-CSF interface. Recently, CP gene knock-out models and transcriptomic approaches have engendered specific analysis of CP transport and metabolism. Increasing attention is being paid to the CP role in diseases such as Alzheimer’s, Parkinson’s, stroke, intracranial hypertension and hydrocephalus. The physiologic impact of CP-CSF fluid generation, pressure and homeostasis on the putative glymphatic system is a promising topic. There is an increasing need to blend transport/fluid phenomena at the BCSFB with the BBB and ependymal CSF-brain interface. Integrated models that incorporate all CNS transport interfaces will provide a key impetus for advances in translational neuromedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG (2018) The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol 135(3):387–407

    Article  PubMed  CAS  Google Scholar 

  • Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557(Pt 3):889–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adamson SX, Shen X, Jiang W, Lai V, Wang X, Shannahan JH et al (2018) Subchronic manganese exposure impairs neurogenesis in the adult rat hippocampus. Toxicol Sci 163(2):592–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agnati LF, Bjelke B, Fuxe K (1995) Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology. Med Res Rev 15(1):33–45

    Article  PubMed  CAS  Google Scholar 

  • Akdemir G, Luer MS, Dujovny M, Misra M (1997) Intraventricular atrial natriuretic peptide for acute intracranial hypertension. Neurol Res 19(5):515–520

    Article  PubMed  CAS  Google Scholar 

  • Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A (2010) Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol Disord Drug Targets 9(3):373–382

    Article  PubMed  CAS  Google Scholar 

  • Aldred AR, Brack CM, Schreiber G (1995) The cerebral expression of plasma protein genes in different species. Comp Biochem Physiol B Biochem Mol Biol 111(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Allonen H, Anderson KE, Iisalo E, Kanto J, Stromblad LG, Wettrell G (1977) Passage of digoxin into cerebrospinal fluid in man. Acta Pharmacol Toxicol 41(3):193–202

    Article  CAS  Google Scholar 

  • Andersen HH, Johnsen KB, Moos T (2014) Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci 71(9):1607–1622

    Article  PubMed  CAS  Google Scholar 

  • Anderson DK, Heisey SR (1975) Creatinine, potassium, and calcium flux from chicken cerebrospinal fluid. Am J Phys 228(2):415–419

    Article  CAS  Google Scholar 

  • Anonymous (1998) International randomised controlled trial of acetazolamide and furosemide in posthaemorrhagic ventricular dilatation in infancy. International PHVD Drug Trial Group. Lancet (London, England) 352(9126):433–440

    Article  Google Scholar 

  • Arregui A, Iversen LL (1978) Angiotensin-converting enzyme: presence of high activity in choroid plexus of mammalian brain. Eur J Pharmacol 52(1):147–150

    Article  PubMed  CAS  Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balin BJ, Broadwell RD (1988) Transcytosis of protein through the mammalian cerebral epithelium and endothelium. I. Choroid plexus and the blood-cerebrospinal fluid barrier. J Neurocytol 17(6):809–826

    Article  PubMed  CAS  Google Scholar 

  • Batllori M, Molero-Luis M, Ormazabal A, Montero R, Sierra C, Ribes A et al (2018) Cerebrospinal fluid monoamines, pterins, and folate in patients with mitochondrial diseases: systematic review and hospital experience. J Inherit Metab Dis 41:1147–1158

    Article  PubMed  CAS  Google Scholar 

  • Bergen AA, Kaing S, ten Brink JB, Gorgels TG, Janssen SF, Bank NB (2015) Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer’s disease. BMC Genomics 16:956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bering EA Jr (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump. AMA Arch Neurol Psychiatry 73(2):165–172

    Article  PubMed  Google Scholar 

  • Betz AL, Firth JA, Goldstein GW (1980) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res 192(1):17–28

    Article  PubMed  CAS  Google Scholar 

  • Bezerra MLS, Ferreira ACAF, de Oliveira-Souza R (2017) Pseudotumor cerebri and glymphatic dysfunction. Front Neurol 8:734

    Article  PubMed  Google Scholar 

  • Birzis L, Carter CH, Maren TH (1958) Effects of acetazolamide on CSF pressure and electrolytes in hydrocephalus. Neurology 8(7):522–528

    Article  PubMed  CAS  Google Scholar 

  • Black PM (1999) Harvey Cushing at the Peter Bent Brigham Hospital. Neurosurgery 45(5):990–1001

    Article  PubMed  CAS  Google Scholar 

  • Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E et al (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17:660–688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF (2004) Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 35(9):2206–2210

    Article  PubMed  Google Scholar 

  • Boyson SJ, Alexander A (1990) Net production of cerebrospinal fluid is decreased by SCH-23390. Ann Neurol 27(6):631–635

    Article  PubMed  CAS  Google Scholar 

  • Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Phys 240(4):F329–F336

    CAS  Google Scholar 

  • Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cains S, Shepherd A, Nabiuni M, Owen-Lynch PJ, Miyan J (2009) Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol 68(4):404–416

    Article  PubMed  Google Scholar 

  • Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I (2006a) Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging 27(11):1618–1631

    Article  PubMed  CAS  Google Scholar 

  • Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F et al (2006b) Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 27(9):1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Cherian I, Bernardo A, Grasso G (2016) Cisternostomy for traumatic brain injury: pathophysiologic mechanisms and surgical technical notes. World Neurosurg 89:51–57

    Article  PubMed  Google Scholar 

  • Chodobski A, Szmydynger-Chodobska J, Vannorsdall MD, Epstein MH, Johanson CE (1994) AT1 receptor subtype mediates the inhibitory effect of central angiotensin II on cerebrospinal fluid formation in the rat. Regul Pept 53(2):123–129

    Article  PubMed  CAS  Google Scholar 

  • Chodobski A, Loh YP, Corsetti S, Szmydynger-Chodobska J, Johanson CE, Lim YP et al (1997) The presence of arginine vasopressin and its mRNA in rat choroid plexus epithelium. Brain Res Mol Brain Res 48(1):67–72

    Article  PubMed  CAS  Google Scholar 

  • Chodobski A, Szmydynger-Chodobska J, Johanson CE (1998) Vasopressin mediates the inhibitory effect of central angiotensin II on cerebrospinal fluid formation. Eur J Pharmacol 347(2–3):205–209

    Article  PubMed  CAS  Google Scholar 

  • Chodobski A, Szmydynger-Chodobska J, Johanson CE (1999) Angiotensin II regulates choroid plexus blood flow by interacting with the sympathetic nervous system and nitric oxide. Brain Res 816(2):518–526

    Article  PubMed  CAS  Google Scholar 

  • Christensen HL, Nguyen AT, Pedersen FD, Damkier HH (2013) Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies. Front Physiol 4:304

    PubMed  PubMed Central  Google Scholar 

  • Christensen HL, Barbuskaite D, Rojek A, Malte H, Christensen IB, Fuchtbauer AC et al (2018) The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH. J Physiol 596:4709–4728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clardy SL, Wang X, Boyer PJ, Earley CJ, Allen RP, Connor JR (2006) Is ferroportin-hepcidin signaling altered in restless legs syndrome? J Neurol Sci 247(2):173–179

    Article  PubMed  CAS  Google Scholar 

  • Cruz Y, García EE, Gálvez JV, Arias-Santiago SV, Carvajal HG, Silva-García R et al (2018) Release of interleukin-10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer-1 immunization after cerebral ischemia. Neural Regen Res 13(10):1743–1752

    Article  PubMed  PubMed Central  Google Scholar 

  • Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51(2):273–311

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF (1988) Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann N Y Acad Sci 529:9–20

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF, VanDyke DH (1971) 5-Hydroxyindoleacetic acid accumulation by isolated choroid plexus. Am J Phys 220(3):718–723

    Article  CAS  Google Scholar 

  • Curry FE, Frokjaer-Jensen J (1984) Water flow across the walls of single muscle capillaries in the frog, Rana pipiens. J Physiol 350:293–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai YB, Wu WF, Huang B, Miao YF, Nadarshina S, Warner M et al (2016) Liver X receptors regulate cerebrospinal fluid production. Mol Psychiatry 21(6):844–856

    Article  PubMed  CAS  Google Scholar 

  • Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93(4):1847–1892

    Article  PubMed  CAS  Google Scholar 

  • Davson H, Segal MB (1970) The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 209(1):131–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deignan JL, De Deyn PP, Cederbaum SD, Fuchshuber A, Roth B, Gsell W et al (2010) Guanidino compound levels in blood, cerebrospinal fluid, and post-mortem brain material of patients with argininemia. Mol Genet Metab 100(Suppl 1):S31–S36

    Article  PubMed  CAS  Google Scholar 

  • Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14(1):1–13

    Article  PubMed  Google Scholar 

  • Doczi T, Joo F, Vecsernyes M, Bodosi M (1988) Increased concentration of atrial natriuretic factor in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage and raised intracranial pressure. Neurosurgery 23(1):16–19

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Wu HT, Qin XY, Cao C, Liu Y, Cao ZZ et al (2018) Postmortem brain, cerebrospinal fluid, and blood neurotrophic factor levels in Alzheimer’s disease: a systematic review and meta-analysis. J Mol Neurosci 65(3):289–300

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 33(12):579–589

    Article  PubMed  CAS  Google Scholar 

  • Faraci FM, Heistad DD (1992) Does basal production of nitric oxide contribute to regulation of brain-fluid balance? Am J Phys 262(2 Pt 2):H340–H344

    CAS  Google Scholar 

  • Faraci FM, Mayhan WG, Heistad DD (1990) Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Phys 258(1 Pt 2):R94–R98

    CAS  Google Scholar 

  • Farthing CA, Sweet DH (2014) Expression and function of organic cation and anion transporters (SLC22 family) in the CNS. Curr Pharm Des 20(10):1472–1486

    Article  PubMed  CAS  Google Scholar 

  • Fenstermacher JD, Johnson JA (1966) Filtration and reflection coefficients of the rabbit blood-brain barrier. Am J Phys 211(2):341–346

    Article  CAS  Google Scholar 

  • Fenstermacher JD, Ghersi-Egea JF, Finnegan W, Chen JL (1997) The rapid flow of cerebrospinal fluid from ventricles to cisterns via subarachnoid velae in the normal rat. Acta Neurochir Suppl 70:285–287

    PubMed  CAS  Google Scholar 

  • Fraser PA, Dallas AD, Davies S (1990) Measurement of filtration coefficient in single cerebral microvessels of the frog. J Physiol 423:343–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gath U, Hakvoort A, Wegener J, Decker S, Galla HJ (1997) Porcine choroid plexus cells in culture: expression of polarized phenotype, maintenance of barrier properties and apical secretion of CSF-components. Eur J Cell Biol 74(1):68–78

    PubMed  CAS  Google Scholar 

  • Gerstberger R, Schütz H, Luther-Dyroff D, Keil R, Simon E (1992) Inhibition of vasopressin and aldosterone release by atrial natriuretic peptide in conscious rabbits. Exp Physiol 77(4):587–600

    Article  PubMed  CAS  Google Scholar 

  • Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD (1996) Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience 75(4):1271–1288

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JE, Thomas SA (2005) Choroid plexus and drug therapy for AIDS encephalopathy. In: Zheng W, Chodobski A (eds) The blood-cerebrospinal fluid barrier. CRC/Taylor & Francis Group, Boca Raton, FL, pp 391–411

    Google Scholar 

  • González Burgos GR, Rosenstein RE, Cardinali DP (1994) Daily changes in presynaptic cholinergic activity of rat sympathetic superior cervical ganglion. Brain Res 636(2):181–186

    Article  PubMed  Google Scholar 

  • Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ (2019) Genetic and pharmacological inactivation of apical Na+-K+-2Cl- cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 316(4):C525–CC44

    Article  PubMed  Google Scholar 

  • Groger N, Vitzthum H, Frohlich H, Kruger M, Ehmke H, Braun T et al (2012) Targeted mutation of SLC4A5 induces arterial hypertension and renal metabolic acidosis. Hum Mol Genet 21(5):1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Grove KL, Goncalves J, Picard S, Thibault G, Deschepper CF (1997) Comparison of ANP binding and sensitivity in brains from hypertensive and normotensive rats. Am J Phys 272(4 Pt 2):R1344–R1353

    CAS  Google Scholar 

  • Gudasheva TA, Povarnina PY, Antipova TA, Seredenin SB (2018) Dipeptide mimetic of the BDNF GSB-106 with antidepressant-like activity stimulates synaptogenesis. Dokl Biochem Biophys 481(1):225–227

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro PM, Bataille AM, Parker SL, Renfro JL (2014) Active removal of inorganic phosphate from cerebrospinal fluid by the choroid plexus. Am J Physiol Renal Physiol 306(11):F1275–F1284

    Article  PubMed  CAS  Google Scholar 

  • Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare O, Laake P et al (2011) Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A 108(43):17815–17820

    Article  PubMed  PubMed Central  Google Scholar 

  • Hakvoort A, Haselbach M, Wegener J, Hoheisel D, Galla HJ (1998) The polarity of choroid plexus epithelial cells in vitro is improved in serum-free medium. J Neurochem 71(3):1141–1150

    Article  PubMed  CAS  Google Scholar 

  • Hartig PR, Hoffman BJ, Kaufman MJ, Hirata F (1990) The 5-HT1C receptor. Ann N Y Acad Sci 600:149–166. discussion 66–67

    Article  PubMed  CAS  Google Scholar 

  • Hartz AM, Bauer B (2011) ABC transporters in the CNS – an inventory. Curr Pharm Biotechnol 12(4):656–673

    Article  PubMed  CAS  Google Scholar 

  • Haywood JR, Vogh BP (1979) Some measurements of autonomic nervous system influence on production of cerebrospinal fluid in the cat. J Pharmacol Exp Ther 208(2):341–346

    PubMed  CAS  Google Scholar 

  • Herbute S, Oliver J, Davet J, Viso M, Ballard RW, Gharib C et al (1994) ANP binding sites are increased in choroid plexus of SLS-1 rats after 9 days of spaceflight. Aviat Space Environ Med 65(2):134–138

    PubMed  CAS  Google Scholar 

  • Herrick-Davis K, Grinde E, Lindsley T, Teitler M, Mancia F, Cowan A et al (2015) Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells. Mol Pharmacol 87(4):660–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiramatsu M, Edamatsu R, Fujikawa N, Shirasu A, Yamamoto M, Suzuki S et al (1988) Measurement during convulsions of guanidino compound levels in cerebrospinal fluid collected with a catheter inserted into the cisterna magna of rabbits. Brain Res 455(1):38–42

    Article  PubMed  CAS  Google Scholar 

  • Hise MA, Johanson CE (1979) The sink action of cerebrospinal fluid in uremia. Eur Neurol 18(5):328–337

    Article  PubMed  CAS  Google Scholar 

  • Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Hladky SB, Barrand MA (2016) Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 13(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosoya K, Tachikawa M (2011) Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol 15(4):478–485

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Shen H, Keep RF, Smith DE (2007) Peptide transporter 2 (PEPT2) expression in brain protects against 5-aminolevulinic acid neurotoxicity. J Neurochem 103(5):2058–2065

    Article  PubMed  CAS  Google Scholar 

  • Huang JT, Wajda IJ (1977) The effects of morphine on the accumulation of homovanillic and 5-hydroxyindoleacetic acids in the choroid plexus of rats. Br J Pharmacol 60(3):363–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang SL, Wang J, He XJ, Li ZF, Pu JN, Shi W (2014) Secretion of BDNF and GDNF from free and encapsulated choroid plexus epithelial cells. Neurosci Lett 566:42–45

    Article  PubMed  CAS  Google Scholar 

  • Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44(6 Suppl 1):S93–S95

    Article  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra11

    Article  CAS  Google Scholar 

  • Israel A, Garrido MR, Barbella Y, Becemberg I (1988) Rat atrial natriuretic peptide (99-126) stimulates guanylate cyclase activity in rat subfornical organ and choroid plexus. Brain Res Bull 20(2):253–256

    Article  PubMed  Google Scholar 

  • Jacobs S, Ruusuvuori E, Sipila ST, Haapanen A, Damkier HH, Kurth I et al (2008) Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A 105(1):311–316

    Article  PubMed  Google Scholar 

  • Janssen SF, van der Spek SJ, Ten Brink JB, Essing AH, Gorgels TG, van der Spek PJ et al (2013) Gene expression and functional annotation of the human and mouse choroid plexus epithelium. PLoS One 8(12):e83345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang H, Hu Y, Keep RF, Smith DE (2009) Enhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null mice. J Neurochem 109(5):1536–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johanson CE (1984) Differential effects of acetazolamide, benzolamide and systemic acidosis on hydrogen and bicarbonate gradients across the apical and basolateral membranes of the choroid plexus. J Pharmacol Exp Ther 231(3):502–511

    PubMed  CAS  Google Scholar 

  • Johanson CE (1988) The choroid plexus-arachnoid-cerebrospinal fluid system. In: Boulton A, Baker G, Walz W (eds) Neuromethods: neuronal microenvironment- electrolytes and water spaces, vol 9. Humana, Clifton, NJ, pp 33–104

    Chapter  Google Scholar 

  • Johanson CE (2015) Fluid-forming functions of the choroid plexus: what is the role of aquaporin-1? In: Dorovini-Zis K (ed) The blood-brain barrier in health and disease, vol 1: Morphology, biology and immune function. CRC, Boca Raton, pp 140–171

    Google Scholar 

  • Johanson CE (2017) Choroid plexus–cerebrospinal fluid transport dynamics: support of brain health and a role in neurotherapeutics. In: Conn PM (ed) Conn’s translational neuroscience. Elsevier, Academic, pp 233–261

    Google Scholar 

  • Johanson C, Johanson N (2016) Merging transport data for choroid plexus with blood-brain barrier to model CNS homeostasis and disease more effectively. CNS Neurol Disord Drug Targets 15(9):1151–1180

    Article  PubMed  CAS  Google Scholar 

  • Johanson C, Woodbury D (1974) Changes in CSF flow and extracellular space in the developing rat. In: Vernadakis A, Weiner N (eds) Drugs and the developing brain. Plenum, New York, pp 281–287

    Chapter  Google Scholar 

  • Johanson CE, Reed DJ, Woodbury DM (1974) Active transport of sodium and potassium by the choroid plexus of the rat. J Physiol 241(2):359–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johanson CE, Preston JE, Chodobski A, Stopa EG, Szmydynger-Chodobska J, McMillan PN (1999a) AVP V1 receptor-mediated decrease in cl- efflux and increase in dark cell number in choroid plexus epithelium. Am J Phys 276(1 Pt 1):C82–C90

    Article  CAS  Google Scholar 

  • Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, McMillan P, Stopa EG (1999b) Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Phys 277(1 Pt 2):R263–R271

    CAS  Google Scholar 

  • Johanson CE, Donahue JE, Spangenberger A, Stopa EG, Duncan JA, Sharma HS (2006) Atrial natriuretic peptide: its putative role in modulating the choroid plexus-CSF system for intracranial pressure regulation. Acta Neurochir Suppl 96:451–456

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Duncan JA III, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johanson CE, Stopa E, McMillan PN (2011a) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Stopa E, McMillan PN, Roth DR, Funk J, Krinke G (2011b) The distributional nexus of choroid plexus to CSF, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization and lesion spread. Toxicol Pathol 39(1):186–212

    Article  PubMed  Google Scholar 

  • Johanson C, Stopa E, Baird A, Sharma H (2011c) Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm (Vienna) 118(1):115–133

    Article  CAS  Google Scholar 

  • Johanson CE, Stopa EG, Daiello L, de la Monte S, Keane M, Ott B (2018) Disrupted blood-CSF barrier to urea and creatinine in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis Parkinsonism 8:2

    Google Scholar 

  • Johnston M, Zakharov A, Koh L, Armstrong D (2005) Subarachnoid injection of microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol 31(6):632–640

    Article  PubMed  CAS  Google Scholar 

  • Jones HC, Keep RF (1988) Brain fluid calcium concentration and response to acute hypercalcaemia during development in the rat. J Physiol 402:579–593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamal MA, Keep RF, Smith DE (2008) Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab Pharmacokinet 23(4):236–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kao L, Kurtz LM, Shao X, Papadopoulos MC, Liu L, Bok D et al (2011) Severe neurologic impairment in mice with targeted disruption of the electrogenic sodium bicarbonate cotransporter NBCe2 (Slc4a5 gene). J Biol Chem 286(37):32563–32574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA et al (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23(8):997–1003

    Article  PubMed  CAS  Google Scholar 

  • Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res 56(1):47–53

    Article  CAS  Google Scholar 

  • Keep RF, Smith DE (2011) Choroid plexus transport: gene deletion studies. Fluids Barriers CNS 8(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konsman JP, Tridon V, Dantzer R (2000) Diffusion and action of intracerebroventricularly injected interleukin-1 in the CNS. Neuroscience 101(4):957–967

    Article  PubMed  CAS  Google Scholar 

  • Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T et al (2013) IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136(Pt 11):3427–3440

    Article  PubMed  Google Scholar 

  • Lam MA, Hemley SJ, Najafi E, Vella NGF, Bilston LE, Stoodley MA (2017) The ultrastructure of spinal cord perivascular spaces: implications for the circulation of cerebrospinal fluid. Sci Rep 7(1):12924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanz TA, Bove SE, Pilsmaker CD, Mariga A, Drummond EM, Cadelina GW et al (2012) Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma. Biomarkers 17(6):524–531

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Anderson AR, Rayfield AJ, Stevens MG, Poronnik P, Meabon JS et al (2012) Localisation of novel forms of glutamate transporters and the cystine-glutamate antiporter in the choroid plexus: implications for CSF glutamate homeostasis. J Chem Neuroanat 43(1):64–75

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Ding Y, Krafft P, Wan W, Yan F, Wu G et al (2018) Targeting germinal matrix hemorrhage-induced overexpression of sodium-coupled bicarbonate exchanger reduces posthemorrhagic hydrocephalus formation in neonatal rats. J Am Heart Assoc 7(3):31

    Article  CAS  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1977) Histochemical study on regional differences in the cholinergic nerve supply of the choroid plexus from various laboratory animals. Exp Neurol 55(1):152–159

    Article  PubMed  CAS  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978a) Histochemical, ultrastructural, and functional evidence for a neurogenic control of CSF production from the choroid plexus. Adv Neurol 20:111–120

    PubMed  CAS  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978b) Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science (New York, NY) 201(4351):176–178

    Article  CAS  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978c) Reduced cerebrospinal fluid formation through cholinergic mechanisms. Neurosci Lett 10(3):311–316

    Article  PubMed  CAS  Google Scholar 

  • Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A et al (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30(8):783–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV (2014) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 4:4160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liszczak TM, Black PM, Foley L (1986) Arginine vasopressin causes morphological changes suggestive of fluid transport in rat choroid plexus epithelium. Cell Tissue Res 246(2):379–385

    Article  PubMed  Google Scholar 

  • Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E et al (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37(6):2112–2124

    Article  PubMed  CAS  Google Scholar 

  • MacAulay N, Zeuthen T (2010) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168(4):941–956

    Article  PubMed  CAS  Google Scholar 

  • Majchrzak H, Kmieciak-Kołada K, Herman Z, Wencel T (1980) Homovanillic (HVA) and 5-hydroxyindoleacetic (5-HIAA) acid concentration in the cerebrospinal fluid of patients with supratentorial tumors and symptoms of intracranial hypertension (preliminary report). Neurol Neurochir Pol 14(1):87–90

    PubMed  CAS  Google Scholar 

  • Maktabi MA, Faraci FM (1994) Endogenous angiotensin II inhibits production of cerebrospinal fluid during posthypoxemic reoxygenation in the rabbit. Stroke 25(7):1489–1493. discussion 94

    Article  PubMed  CAS  Google Scholar 

  • Maktabi MA, Heistad DD, Faraci FM (1991) Effects of central and intravascular angiotensin I and II on the choroid plexus. Am J Phys 261(5 Pt 2):R1126–R1132

    CAS  Google Scholar 

  • Maktabi MA, Stachovic GC, Faraci FM (1993a) Angiotensin II decreases the rate of production of cerebrospinal fluid. Brain Res 606(1):44–49

    Article  PubMed  CAS  Google Scholar 

  • Maktabi MA, Elbokl FF, Faraci FM, Todd MM (1993b) Halothane decreases the rate of production of cerebrospinal fluid. Possible role of vasopressin V1 receptors. Anesthesiology 78(1):72–82

    Article  PubMed  CAS  Google Scholar 

  • Maren TH (1979) Effect of varying CO2 equilibria on rates of HCO3- formation in cerebrospinal fluid. J Appl Physiol Respir Environ Exerc Physiol 47(3):471–477

    PubMed  CAS  Google Scholar 

  • Maren TH (1988) The kinetics of HCO3- synthesis related to fluid secretion, pH control, and CO2 elimination. Annu Rev Physiol 50:695–717

    Article  PubMed  CAS  Google Scholar 

  • Markey KA, Ottridge R, Mitchell JL, Rick C, Woolley R, Ives N et al (2017) Assessing the efficacy and safety of an 11beta-hydroxysteroid dehydrogenase type 1 inhibitor (AZD4017) in the idiopathic intracranial hypertension drug trial, IIH:DT: clinical methods and design for a phase II randomized controlled trial. JMIR Res Protoc 6(9):e181

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin-de-Pablos A, Córdoba-Fernández A, Fernández-Espejo E (2018) Analysis of neurotrophic and antioxidant factors related to midbrain dopamine neuronal loss and brain inflammation in the cerebrospinal fluid of the elderly. Exp Gerontol 110:54–60

    Article  PubMed  CAS  Google Scholar 

  • Marumo F, Masuda T, Masaki Y, Ando K (1988) The presence of atrial natriuretic peptide in canine cerebrospinal fluid and its possible origin in the brain. J Endocrinol 119(1):127–131

    Article  PubMed  CAS  Google Scholar 

  • Masana M, Westerholz S, Kretzschmar A, Treccani G, Liebl C, Santarelli S et al (2018) Expression and glucocorticoid-dependent regulation of the stress-inducible protein DRR1 in the mouse adult brain. Brain Struct Funct 223:4039–4052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michel CC, Mason JC, Curry FE, Tooke JE, Hunter PJ (1974) A development of the Landis technique for measuring the filtration coefficient of individual capillaries in the frog mesentery. Q J Exp Physiol Cogn Med Sci 59(4):283–309

    PubMed  CAS  Google Scholar 

  • Min-Chu L, Mackenna BR, Watt JA (1981) Evidence for the contribution by the cerebral cortex to 5-hydroxyindoleacetic acid found in the cerebrospinal fluid of cats. Brain Res 209(1):235–239

    Article  PubMed  CAS  Google Scholar 

  • Mitro A, Lorencova M, Kutna V, Polak S (2018) Labelling of individual ependymal areas in lateral ventricles of human brain: ependymal tables. Bratisl Lek Listy 119(5):265–271

    PubMed  CAS  Google Scholar 

  • Mokgokong R, Wang S, Taylor CJ, Barrand MA, Hladky SB (2014) Ion transporters in brain endothelial cells that contribute to formation of brain interstitial fluid. Pflugers Arch 466(5):887–901

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Tsutsumi K, Kurihara M, Kawaguchi T, Niwa M (1990) Alteration of atrial natriuretic peptide receptors in the choroid plexus of rats with induced or congenital hydrocephalus. Childs Nerv Syst 6(4):190–193

    Article  PubMed  CAS  Google Scholar 

  • Mudò G, Bonomo A, Di Liberto V, Frinchi M, Fuxe K, Belluardo N (2009) The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J Neural Transm (Vienna) 116(8):995–1005

    Article  CAS  Google Scholar 

  • Murphy VA, Johanson CE (1989a) Acidosis, acetazolamide, and amiloride: effects on 22Na transfer across the blood-brain and blood-CSF barriers. J Neurochem 52(4):1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Murphy VA, Johanson CE (1989b) Alteration of sodium transport by the choroid plexus with amiloride. Biochim Biophys Acta 979(2):187–192

    Article  PubMed  CAS  Google Scholar 

  • Murphy VA, Smith QR, Rapoport SI (1989) Uptake and concentrations of calcium in rat choroid plexus during chronic hypo- and hypercalcemia. Brain Res 484(1–2):65–70

    Article  PubMed  CAS  Google Scholar 

  • Myung J, Wu D, Simonneaux V, Lane TJ (2018) Strong circadian rhythms in the choroid plexus: implications for sleep-independent brain metabolite clearance. J Exp Neurosci 12:1179069518783762

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabeka H, Saito S, Li X, Shimokawa T, Khan MSI, Yamamiya K et al (2017) Interneurons secrete prosaposin, a neurotrophic factor, to attenuate kainic acid-induced neurotoxicity. IBRO Rep 3:17–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M (2006) Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 291(5):R1383–R1389

    Article  PubMed  CAS  Google Scholar 

  • Nakada T, Kwee IL (2019) Fluid dynamics inside the brain barrier: current concept of interstitial flow, glymphatic flow, and cerebrospinal fluid circulation in the brain. Neuroscientist 25(2):155–166

    Article  PubMed  Google Scholar 

  • Nakamura S, Maeda K, Sasaki J, Tsubokawa T (1985) Serotonergic effect on cerebrospinal fluid production. No to Shinkei = Brain Nerve 37(3):237–242

    PubMed  CAS  Google Scholar 

  • Napoleone P, Sancesario G, Amenta F (1982) Indoleaminergic innervation of rat choroid plexus: a fluorescence histochemical study. Neurosci Lett 34(2):143–147

    Article  PubMed  CAS  Google Scholar 

  • Naz N, Jimenez AR, Sanjuan-Vilaplana A, Gurney M, Miyan J (2016) Neonatal hydrocephalus is a result of a block in folate handling and metabolism involving 10-formyltetrahydrofolate dehydrogenase. J Neurochem 138(4):610–623

    Article  PubMed  CAS  Google Scholar 

  • Nilsson C, Lindvall-Axelsson M, Owman C (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Brain Res Rev 17(2):109–138

    Article  PubMed  CAS  Google Scholar 

  • Nilsson C, Stahlberg F, Gideon P, Thomsen C, Henriksen O (1994) The nocturnal increase in human cerebrospinal fluid production is inhibited by a beta 1-receptor antagonist. Am J Phys 267(6 Pt 2):R1445–R1448

    CAS  Google Scholar 

  • Nixon PF (2008) Glutamate export at the choroid plexus in health, thiamin deficiency, and ethanol intoxication: review and hypothesis. Alcohol Clin Exp Res 32(8):1339–1349

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell ME (2014) Blood-brain barrier Na transporters in ischemic stroke. Advances in pharmacology (San Diego). CAL 71:113–146

    Google Scholar 

  • Ocrant I, Parmelee JT (1992) Immunofluorescent cytometry and electron microscopic immunolocalization of insulin-like growth factor (IGF)-II receptors in infant rat choroid plexus. Mol Cell Neurosci 3(4):354–359

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH, Davson H (1967) Brain extracellular space and the sink action of cerebrospinal fluid. Measurement of rabbit brain extracellular space using sucrose labeled with carbon 14. Arch Neurol 17(2):196–205

    Article  PubMed  CAS  Google Scholar 

  • Oreskovic D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64(2):241–262

    Article  PubMed  CAS  Google Scholar 

  • Oreskovic D, Klarica M (2014) A new look at cerebrospinal fluid movement. Fluids Barriers CNS 11:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Oshio K, Song Y, Verkman AS, Manley GT (2003) Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir Suppl 86:525–528

    PubMed  CAS  Google Scholar 

  • Palacios JM (2016) Serotonin receptors in brain revisited. Brain Res 1645:46–49

    Article  PubMed  CAS  Google Scholar 

  • Palm DE, Knuckey NW, Primiano MJ, Spangenberger AG, Johanson CE (1995) Cystatin C, a protease inhibitor, in degenerating rat hippocampal neurons following transient forebrain ischemia. Brain Res 691(1–2):1–8

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Dwivedi Y, Ren X, Rizavi HS, Faludi G, Sarosi A et al (2006) Regional distribution and relative abundance of serotonin(2c) receptors in human brain: effect of suicide. Neurochem Res 31(2):167–176

    Article  PubMed  Google Scholar 

  • Pappenheimer J, Heisey S, Jordan E (1961) Active transport of diodrast and phenolsulfonphthalein from cerebrospinal fluid to blood. Am J Phys 200:1–10

    Article  CAS  Google Scholar 

  • Parmelee JT, Johanson CE (1989) Development of potassium transport capability by choroid plexus of infant rats. Am J Phys 256(3 Pt 2):R786–R791

    CAS  Google Scholar 

  • Paulson OB, Hertz MM, Bolwig TG, Lassen NA (1977) Filtration and diffusion of water across the blood-brain barrier in man. Microvasc Res 13(1):113–124

    Article  PubMed  CAS  Google Scholar 

  • Pirttila TJ, Lukasiuk K, Hakansson K, Grubb A, Abrahamson M, Pitkanen A (2005) Cystatin C modulates neurodegeneration and neurogenesis following status epilepticus in mouse. Neurobiol Dis 20(2):241–253

    Article  PubMed  CAS  Google Scholar 

  • Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Phys 213(4):1031–1038

    Article  CAS  Google Scholar 

  • Praetorius J, Damkier HH (2017) Transport across the choroid plexus epithelium. Am J Physiol 312(6):C673–CC86

    Article  Google Scholar 

  • Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol 291(1):C59–C67

    Article  CAS  Google Scholar 

  • Pullen RG, DePasquale M, Cserr HF (1987) Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality. Am J Phys 253(3 Pt 2):F538–F545

    CAS  Google Scholar 

  • Quintela T, Sousa C, Patriarca FM, Goncalves I, Santos CR (2015) Gender associated circadian oscillations of the clock genes in rat choroid plexus. Brain Struct Funct 220(3):1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Quintela T, Albuquerque T, Lundkvist G, Carmine Belin A, Talhada D, Gonçalves I et al (2018) The choroid plexus harbors a circadian oscillator modulated by estrogens. Chronobiol Int 35(2):270–279

    Article  PubMed  CAS  Google Scholar 

  • Raha-Chowdhury R, Raha AA, Forostyak S, Zhao JW, Stott SR, Bomford A (2015) Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci 16:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rall DP (1968) Transport through the ependymal linings. Prog Brain Res 29:159–172

    Article  PubMed  CAS  Google Scholar 

  • Reed DJ, Yen MH (1978) The role of the cat choroid plexus in regulating cerebrospinal fluid magnesium. J Physiol 281:477–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saavedra JM, Kurihara M (1991) Autoradiography of atrial natriuretic peptide (ANP) receptors in the rat brain. Can J Physiol Pharmacol 69(10):1567–1575

    Article  PubMed  CAS  Google Scholar 

  • Savolainen M, Emerich D, Kordower JH (2018) Disease modification through trophic factor delivery. Methods Mol Biol 1780:525–547

    Article  PubMed  CAS  Google Scholar 

  • Schmitt C, Strazielle N, Richaud P, Bouron A, Ghersi-Egea JF (2011) Active transport at the blood-CSF barrier contributes to manganese influx into the brain. J Neurochem 117(4):747–756

    PubMed  CAS  Google Scholar 

  • Schultz WJ, Brownfield MS, Kozlowski GP (1977) The hypothalamo-choroidal tract. II. Ultrastructural response of the choroid plexus to vasopressin. Cell Tissue Res 178(1):129–141

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Baruch K (2014) The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33(1):7–22

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Deczkowska A (2016) Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol 37(10):668–679

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Johanson CE (2007) Intracerebroventricularly administered neurotrophins attenuate blood cerebrospinal fluid barrier breakdown and brain pathology following whole-body hyperthermia: an experimental study in the rat using biochemical and morphological approaches. Ann N Y Acad Sci 1122:112–129

    Article  PubMed  CAS  Google Scholar 

  • Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38(3):555–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shruthi S, Sumitha R, Varghese AM, Ashok S, Chandrasekhar Sagar BK, Sathyaprabha TN et al (2017) Brain-derived neurotrophic factor facilitates functional recovery from ALS-cerebral spinal fluid-induced neurodegenerative changes in the NSC-34 motor neuron cell line. Neurodegener Dis 17(1):44–58

    Article  PubMed  CAS  Google Scholar 

  • Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H et al (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57(10):1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AJ, Onyimba CU, Khosla P, Vijapurapu N, Tomlinson JW, Burdon MA et al (2007) Corticosteroids, 11beta-hydroxysteroid dehydrogenase isozymes and the rabbit choroid plexus. J Neuroendocrinol 19(8):614–620

    Article  PubMed  CAS  Google Scholar 

  • Smith SV, Friedman DI (2017) The idiopathic intracranial hypertension treatment trial: a review of the outcomes. Headache 57(8):1303–1310

    Article  PubMed  Google Scholar 

  • Smith AJ, Verkman AS (2018) The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J 32(2):543–551

    Article  PubMed  CAS  Google Scholar 

  • Snodgrass SR, Johanson CE (2018) Choroid plexus: source of cerebrospinal fluid and regulator of brain development and function. In: Cinalli G (ed) Pediatric hydrocephalus. Springer, Berlin, pp 1–36

    Google Scholar 

  • Sorensen SC, Gjerris F (1977) Adaptation of intraventricular pressure to acute changes in brain volume. Exp Eye Res 25(Suppl):387–390

    Article  PubMed  Google Scholar 

  • Sørensen E, Olesen J, Rask-Madsen J, Rask-Andersen H (1978) The electrical potential difference and impedance between CSF and blood in unanesthetized man. Scand J Clin Lab Invest 38(3):203–207

    Article  PubMed  Google Scholar 

  • Spector R, Johanson CE (1989) The mammalian choroid plexus. Sci Am 261(5):68–74

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Johanson CE (2014) The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. Mol Brain 7:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spector R, Keep RF, Snodgrass SR, Smith QR, Johanson CE (2015a) A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 267:78–86

    Article  PubMed  Google Scholar 

  • Spector R, Snodgrass SR, Johanson CE (2015b) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68

    Article  PubMed  CAS  Google Scholar 

  • Steardo L, Nathanson JA (1987) Brain barrier tissues: end organs for atriopeptins. Science (New York, NY) 235(4787):470–473

    Article  CAS  Google Scholar 

  • Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K et al (2018) Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 9(1):2167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stieger B, Gao B (2015) Drug transporters in the central nervous system. Clin Pharmacokinet 54(3):225–242

    Article  PubMed  CAS  Google Scholar 

  • Stopa EG, Tanis KQ, Miller MC, Nikonova EV, Podtelezhnikov AA, Finney EM et al (2018) Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis. Fluids Barriers CNS 15(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szmydynger-Chodobska J, Chodobski A (2005) Peptide-mediated regulation of CSF formation and blood flow to the choroid plexus. In: Zheng W, Chodobski A (eds) The blood-cerebrospinal fluid barrier. CRC/Francis & Taylor Group, Boca Raton, FL, pp 101–117

    Chapter  Google Scholar 

  • Szmydynger-Chodobska J, Monfils PR, Lin AY, Rahman MP, Johanson CE, Chodobski A (1996) NADPH-diaphorase histochemistry of rat choroid plexus blood vessels and epithelium. Neurosci Lett 208(3):179–182

    Article  PubMed  CAS  Google Scholar 

  • Szmydynger-Chodobska J, Chung I, Chodobski A (2006) Chronic hypernatremia increases the expression of vasopressin and voltage-gated Na channels in the rat choroid plexus. Neuroendocrinology 84(5):339–345

    Article  PubMed  CAS  Google Scholar 

  • Tachikawa M, Hosoya K (2011) Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS 8(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timmusk T, Mudò G, Metsis M, Belluardo N (1995) Expression of mRNAs for neurotrophins and their receptors in the rat choroid plexus and dura mater. Neuroreport 6(15):1997–2000

    Article  PubMed  CAS  Google Scholar 

  • Tucker VL, Huxley VH (1990) Evidence for cholinergic regulation of microvessel hydraulic conductance during tissue hypoxia. Circ Res 66(2):517–524

    Article  PubMed  CAS  Google Scholar 

  • Tulassay T, Khoor A, Bald M, Ritvay J, Szabo A, Rascher W (1990) Cerebrospinal fluid concentrations of atrial natriuretic peptide in children. Acta Paediatr Hung 30(2):201–207

    PubMed  CAS  Google Scholar 

  • Uchida Y, Zhang Z, Tachikawa M, Terasaki T (2015) Quantitative targeted absolute proteomics of rat blood-cerebrospinal fluid barrier transporters: comparison with a human specimen. J Neurochem 134(6):1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Uldall M, Botfield H, Jansen-Olesen I, Sinclair A, Jensen R (2017) Acetazolamide lowers intracranial pressure and modulates the cerebrospinal fluid secretion pathway in healthy rats. Neurosci Lett 645:33–39

    Article  PubMed  CAS  Google Scholar 

  • Vemula S, Roder KE, Yang T, Bhat GJ, Thekkumkara TJ, Abbruscato TJ (2009) A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther 328(2):487–495

    Article  PubMed  CAS  Google Scholar 

  • Vieira M, Gomes JR, Saraiva MJ (2015) Transthyretin induces insulin-like growth factor I nuclear translocation regulating its levels in the hippocampus. Mol Neurobiol 51(3):1468–1479

    Article  PubMed  CAS  Google Scholar 

  • Vindedal GF, Thoren AE, Jensen V, Klungland A, Zhang Y, Holtzman MJ et al (2016) Removal of aquaporin-4 from glial and ependymal membranes causes brain water accumulation. Mol Cell Neurosci 77:47–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogh BP, Godman DR (1989) Effects of inhibition of angiotensin converting enzyme and carbonic anhydrase on fluid production by ciliary process, choroid plexus, and pancreas. J Ocul Pharmacol 5(4):303–311

    Article  PubMed  CAS  Google Scholar 

  • Wallingford MC, Chia JJ, Leaf EM, Borgeia S, Chavkin NW, Sawangmake C et al (2017) SLC20A2 deficiency in mice leads to elevated phosphate levels in cerebrospinal fluid and glymphatic pathway-associated arteriolar calcification, and recapitulates human idiopathic basal ganglia calcification. Brain Pathol 27(1):64–76

    Article  PubMed  CAS  Google Scholar 

  • Walter HJ, Berry M, Hill DJ, Cwyfan-Hughes S, Holly JM, Logan A (1999) Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology 140(1):520–532

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Nykanen M, Yang N, Winlaw D, North K, Verkman AS et al (2011) Altered cellular localization of aquaporin-1 in experimental hydrocephalus in mice and reduced ventriculomegaly in aquaporin-1 deficiency. Mol Cell Neurosci 46(1):318–324

    Article  PubMed  CAS  Google Scholar 

  • Weaver C, McMillan P, Duncan JA, Stopa E, Johanson C (2004) Hydrocephalus disorders: their biophysical and neuroendocrine impact on the choroid plexus epithelium. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction, vol 31. Elsevier, Amsterdam, pp 269–293

    Chapter  Google Scholar 

  • Welch K (1963) Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Phys 205:617–624

    Article  CAS  Google Scholar 

  • Woodard GE, Rosado JA (2008) Natriuretic peptides in vascular physiology and pathology. Int Rev Cell Mol Biol 268:59–93

    Article  PubMed  CAS  Google Scholar 

  • Xiang J, Routhe LJ, Wilkinson DA, Hua Y, Moos T, Xi G et al (2017) The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids Barriers CNS 14(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science (New York, NY) 342(6156):373–377

    Article  CAS  Google Scholar 

  • Xu M, Xiao M, Li S, Yang B (2017) Aquaporins in nervous system. Adv Exp Med Biol 969:81–103

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sugino M, Ohsawa N (1997) Possible regulation of intracranial pressure by human atrial natriuretic peptide in cerebrospinal fluid. Eur Neurol 38(2):88–93

    Article  PubMed  CAS  Google Scholar 

  • Zarebkohan A, Javan M, Satarian L, Ahmadiani A (2009) Effect of chronic administration of morphine on the gene expression level of sodium-dependent vitamin C transporters in rat hippocampus and lumbar spinal cord. J Mol Neurosci 38(3):236–242

    Article  PubMed  CAS  Google Scholar 

  • Zeitzer JM, Maidment NT, Behnke EJ, Ackerson LC, Fried I, Engel J et al (2002) Ultradian sleep-cycle variation of serotonin in the human lateral ventricle. Neurology 59(8):1272–1274

    Article  PubMed  CAS  Google Scholar 

  • Zemo DA, McCabe JT (2001) Salt-loading increases vasopressin and vasopressin 1b receptor mRNA in the hypothalamus and choroid plexus. Neuropeptides 35(3–4):181–188

    Article  PubMed  CAS  Google Scholar 

  • Zeuthen T, Macaulay N (2012) Cotransport of water by Na(+)-K(+)-2Cl(−) cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 590(5):1139–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeuthen T, Gorraitz E, Her K, Wright EM, Loo DD (2016) Structural and functional significance of water permeation through cotransporters. Proc Natl Acad Sci U S A 113(44):E6887–E6e94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Tachikawa M, Uchida Y, Terasaki T (2018) Drug clearance from cerebrospinal fluid mediated by organic anion transporters 1 (Slc22a6) and 3 (Slc22a8) at arachnoid membrane of rats. Mol Pharm 15(3):911–922

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Yang H, Yan L, Jiang S, Xue L, Guan W et al (2014) Effects of lead exposure on copper and copper transporters in choroid plexus of rats. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 32(11):819–822

    PubMed  CAS  Google Scholar 

  • Zheng W (2005) Blood-CSF barrier in iron regulation and manganese-induced parkinsonism. In: Zheng W, Chodobski A (eds) The blood-cerebrospinal fluid barrier. CRC/Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Zheng G, Chen J, Zheng W (2012) Relative contribution of CTR1 and DMT1 in copper transport by the blood-CSF barrier: implication in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 260(3):285–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants to RFK: NS-093399, and NS-106746 from the National Institutes of Health (NIH). NIH funding to CEJ, as NS-27601 and NIA-AG027910, helped to produce some of the information and concepts in this chapter.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad E. Johanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johanson, C.E., Keep, R.F. (2020). Blending Established and New Perspectives on Choroid Plexus-CSF Dynamics. In: Praetorius, J., Blazer-Yost, B., Damkier, H. (eds) Role of the Choroid Plexus in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0536-3_2

Download citation

Publish with us

Policies and ethics